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The biological context

Purpose : Explain patterns arising in experiments with strains of
E − Coli bacteria

Budrene and Berg have performed experiments showing that
chemotactic strains of bacteria E. coli, inoculated in semi-solid agar,
form stable and remarkably complex but geometrically regulated
spatial patterns such as swarm rings, radial spots, and interdigitated
arrays of spots.

A purpose of Mayan Mimura and his group has been to propose
mathematical models to reproduce these patterns.

E. O. Budrene, H. Berg, Dynamics of formation of symmetrical
patterns by chemotactic bacteria, Nature 376 (1995), 49–53.

A. Aotani, M. Mimura, T. Mollee, A model aided understanding of spot
pattern formation in chemotactic E. coli colonies, Japan J. Indust.
Appl. Math. 27 (2010), 5–22.
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An experimental picture

Experimental chevron pattern
(by courtesy of Budrene and Berg, 1995)
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Mathematical modelling

Mayan Mimura has built two successive models in
order to be able to reproduce such patterns.

I am going to show them to you.
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A two component chemotaxis model

Mimura and Tsujikawa have first proposed the following mesoscopic
model based on the chemotaxis and growth of bacteria:

ut = du∆u − div(u∇χ(c)) + f (u)

ct = dc∆c + αu − βc.

Here, u = u(x , t) denotes the density of cells and c = c(x , t) is the
concentration of a chemo-attractant. The constants du, dc , α, and β
are supposed to be positive, χ is the sensitive function of chemotaxis
and f (u) is a growth function with an Allee effect. In the absence of the
function f (u), this system reduces to the Keller-Segel model.

Because of the growth term, the corresponding problem with
homogeneous Neumann boundary conditions possesses a global in
time solution.
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A three component model

ut = du∆u − div(u∇χ(c)) + g(u)nu − b(n)u,
ct = dc∆c + αu − βc,
nt = dn∆n − γg(u)nu.
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Numerical simulations

Formation of the chevron pattern
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Introducing an inactive bacteria

But then Mimura introduced, next to the density u of active bacteria,
the density w of inactive ones

ut = ∆u − div(u∇χ(c)) + g(u)nu − b(n)u,
ct = dc∆c + αu − βc,
nt = dn∆n − γg(u)nu,
wt = b(n)u.

Note that the knowledge of u and n is necessary to derive w , whereas
the coupling is incomplete since the knowledge of w is not needed for
the computation of u and n. One can visualize w as a sort of memory
term, which takes into account the values of the product b(n)u at all
previous times.
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Time evolution of active and inactive bacteria
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Time evolution of active and inactive bacteria
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Time evolution of active and inactive bacteria
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Time evolution of active and inactive bacteria
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Time evolution of active and inactive bacteria
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Already known mathematical results

The existence and uniqueness of the solution on the time interval
(0,+∞) has been proved by

P. P. Htoo, M. Mimura, I. Takagi, Global solutions to a one-dimensional
nonlinear parabolic system modeling colonial formation by chemotactic
bacteria, Adv. Stud. Pure Math. 47-2 (2007), 613–622,

in the case of one space dimension and for a special choice of the
functions χ, g and n.
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The full problem

We study the equations

ut = ∆u − div(u∇χ(c)) + g(u)nu − b(n)u
ct = dc∆c + αu − βc
nt = dn∆n − γg(u)nu
wt = b(n)u,

together with the Neumann boundary conditions

∂u
∂ν

=
∂c
∂ν

=
∂n
∂ν

= 0 for x ∈ ∂Ω and t > 0

and the nonnegative initial conditions

u(.,0) = u0, c(.,0) = c0, n(.,0) = n0, w(.,0) = w0.
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Mathematical assumptions

The diffusion coefficients dc > 0 and dn > 0 as well as the coefficients
α > 0, β > 0, γ > 0 denote given constants. Moreover, we impose the
following assumptions on the functions g,b, χ ∈ C1([0,∞)):
(i) g(0) = 0 and g = g(s) is increasing for s > 0 and bounded from
above by a positive constant G0;
(ii) b(0) = B0 > 0 and b = b(s) is decreasing for s > 0 and positive;
(iii) χ′ ∈ L∞([0,∞)).
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Space homogeneous solutions

Note that if the initial conditions are independent of x , namely, if

u0(x) = u0, c0(x) = c0, n0(x) = n0, w0(x) = w0,

for certain constants u0, c0,n0,w0 ∈ [0,∞), then the corresponding
solution is also independent of x .

For every nonnegative, constant initial condition, the corresponding
solution (

ū(t), c̄(t), n̄(t), w̄(t)
)

is global in time and converges exponentially fast towards the constant
vector (0,0, n̄∞, w̄∞) for some n̄∞ ≥ 0 and w̄∞ ≥ 0 depending on the
initial conditions.

This result is proved by analyzing the phase portrait of the
corresponding system of ordinary differential equations.
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Large time behavior of the integrals

Assume that a nonnegative solution (u, c,n,w) exists for all t > 0.
Then ∫

Ω
u(x , t)dx → 0 and

∫
Ω

c(x , t)dx → 0 as t →∞,

and there are constants n∞ > 0 and w∞ > 0 such that∫
Ω

n(x , t)dx → n∞ and
∫

Ω
w(x , t)dx → w∞ as t →∞.
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One dimensional solutions

Assume that d = 1 and Ω ⊂ R is an open and bounded interval. For
every initial condition u0,n0,w0 ∈ L∞(Ω) and c0 ∈W 1,∞(Ω), the
corresponding solution (u, c,n,w) exists for all t > 0. Moreover, there
exists a constant n∞ ≥ 0 and a nonnegative function w∞ ∈ L∞(Ω)
such that (

u(x , t), c(x , t),n(x , t),w(x , t)
)
→ (0,0,n∞,w∞(x))

as t →∞ exponentially fast in L∞(Ω).

This result extends that of P. P. Htoo, M. Mimura, I. Takagi to the case
of more general nonlinear functions.
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Existence and uniqueness of a local in time solution

Following the book by Yagi, we introduce the following spaces

H2
N(Ω) = {u ∈ H2(Ω) :

∂u
∂ν

= 0 on ∂Ω},

H4
N2(Ω) = {u ∈ H2

N(Ω) : ∆u ∈ H2
N(Ω)}.

One can deduce as in the book by Yagi that for every initial datum
(u0, c0,n0,w0) ∈ L2(Ω)× H2

N(Ω)× L2(Ω)× L∞(Ω), there exists T > 0
such that the problem possesses a unique local in time solution
satisfying

u ∈ C((0,T ]; H2
N(Ω)) ∩ C([0,T ]; L2(Ω)) ∩ C1((0,T ]; L2(Ω)),

c ∈ C((0,T ];H4
N2(Ω)) ∩ C([0,T ]; H2

N(Ω)) ∩ C1((0,T ]; H2
N(Ω)),

n ∈ C((0,T ]; H2
N(Ω)) ∩ C([0,T ]; L2(Ω)) ∩ C1((0,T ]; L2(Ω)),

w ∈ C1([0,T ]; L∞(Ω)).
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Nonnegativity and upper bound for n

If u0 ≥ 0, c0 ≥ 0, n0 ≥ 0, w0 ≥ 0 almost everywhere, then the
local-in-time solution is such that

u(., t) ≥ 0, c(., t) ≥ 0,n(., t) ≥ 0,w(., t) ≥ 0,

for all 0 < t < T .

Since γg(u)u ≥ 0 and n0 ≥ 0, the maximum principle also implies that

0 ≤ n(x , t) ≤ ‖n0‖∞ for all x ∈ Ω, t ∈ [0,T ].
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Smallness assumption on the initial data

Let d ∈ {2,3} and (u, c,n,w) be a nonnegative local in time solution.
Fix p0 ∈ (d

2 ,
d

d−2). There exists ε > 0 such that if

max(‖u0‖p0 , ‖n0‖1, ‖∇c0‖2p0) < ε,

then the solution (u, c,n,w) exist for all t > 0 and satisfies

sup
t>0
‖u(t)‖∞ <∞.

Moreover, there exists a constant n∞ ≥ 0 and a nonnegative function
w∞ ∈ L∞(Ω) such that(

u(x , t), c(x , t),n(x , t),w(x , t)
)
→ (0,0,n∞,w∞(x))

as t →∞ exponentially fast in L∞(Ω).
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Global existence for suitable sensitivity functions

Let (u, c,n,w) be a nonnegative local-in-time solution. Assume that
the chemotactic sensitivity function satisfies

dχ(s)

ds
≤ χ0

(1 + c̄s)k for all s ≥ 0

for some constants χ0 > 0, k > 1 and c̄ > 0. Then the solution
(u, c,n,w) exists globally in time and satisfies ‖u(t)‖∞ <∞. Moreover,
there exist a constant n∞ ≥ 0 and a nonnegative function w∞ ∈ L∞(Ω)
such that (

u(x , t), c(x , t),n(x , t),w(x , t)
)
→ (0,0,n∞,w∞(x))

as t →∞ exponentially fast in L∞(Ω).

ERC ReaDi (April 14th, 2016) E-coli colonies 23 / 28



Blow up in finite time?

We prove a result which could go in this direction, however with slightly
modifying the equations, with a linear sensitivity function and an elliptic
equation for the concentration of the chemo-attractant.

ut = ∆u − χ0div(u∇c) + g(u)nu − b(n)u
0 = ∆c + u − c
nt = ∆n − γg(u)nu

in a bounded domain Ω ⊂ R2, supplemented with the Neumann
boundary conditions

∂u
∂ν

=
∂c
∂ν

=
∂n
∂ν

= 0 for x ∈ ∂Ω and t > 0,

and with nonnegative initial functions

u(x ,0) = u0(x), n(x ,0) = n0(x).

ERC ReaDi (April 14th, 2016) E-coli colonies 24 / 28



Blow up in finite time?

Let d = 2 and let q ∈ Ω. Assume that χ0 > 0. Consider a local-in-time
nonnegative solution (u, c,n) of the modified problem above and
assume that

M0 =

∫
Ω

u0(x)dx >
8π
χ0
.

If
∫

Ω u0(x)|x − q|2dx is sufficiently small, then the solution (u, c,n)
cannot be extended to a global one.

ERC ReaDi (April 14th, 2016) E-coli colonies 25 / 28



Duhamel’s formula

u(t) = e∆tu0 +

∫ t

0
∇ · e∆(t−s)u(s)∇χ(c(s))ds

+

∫ t

0
e∆(t−s)u(s)(g(u)n − b(n))(s)ds,
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Estimates for the solution of the heat equation

‖et∆f‖Lp(Ω) ≤ Ct−
d
2

(
1
q−

1
p

)
e−λ1t‖f‖Lq(Ω)

for all f ∈ Lq(Ω) satisfying
∫

Ω fdx = 0 and all t > 0;

‖et∆f‖Lp(Ω) ≤ C
(
1 + t−

d
2

(
1
q−

1
p

))
‖f‖Lq(Ω)

for all f ∈ Lq(Ω) and all t > 0;

‖∇et∆f‖Lp(Ω) ≤ Ct−
d
2

(
1
q−

1
p

)
− 1

2 e−λ1t‖f‖Lq(Ω)

for all f ∈ Lq(Ω) and all t > 0.
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I thank you for your attention
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