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Abstract

We introduce a model aiming at shedding light on the emergence of territorial behaviors in
predators and on the formation of packs. We consider the situation of predators competing for
the same preys (or spatially distributed resource). We analyze the influence of different factors
on the predictions of our model. We focus our attention on the effects of the segregation of
the population of predators into competing, hostile packs on the overall size of the population
of predators. The model allows us to give an economics interpretation of territoriality (in the
sense of Brown 1964). We thus give a purely evolutionary interpretation of territorial and social
behaviors. We present some numerical simulations that allow us to describe our counter-intuitive
and most important conclusion: lethal aggressiveness among hostile packs of predators may
actually lead to an increase of their total population.



Introduction

A long standing and major problem in ecology is to understand the emergence of territoriality,
and in particular, its competitive advantage. Any theory on animal behavior regarding terri-
toriality has to indicate how the relative fitness increases for individuals that adopt territorial
behavior. A common and unifying theory of territoriality may be difficult (if not impossible) to
formulate due to the large variety of environments that host such organisms. This is confirmed
by a reductio ad absurdum based on the simple observation that not all species are territorial.
Among specific theories that have been proposed we can recall for instance the settlement
in familiar sites to increment the efficiency of food-retrieval and decrease mortality (Johnson
and Gaines 1990; Larsen and Boutin 1994), the regulation of the population density (Wynne-
Edwards 1962), provision and allocation of resources (Brown 1964; Wilson 1975), the avoidance
of contagious diseases by the formation of buffer zones between different territories (Krebs 1971).
A general theoretical framework for territorial behaviors should satisfy two prerequisites:
aggressiveness among the con-specifics and economic defendability of the territory (Brown 1964). In
this direction, a good approach to analyze the problem is to adopt an economic viewpoint. That
is, first, aggressive behaviors are favored if they help to increase the survival of the organism
and its likelihood of reproduction, and thus a territory will form if there is an advantage in
increasing the food availability, the mating probability, or the survival of the animal or of its
offspring. In this context, it has been pointed out that a key aspect could be the relative —and
not absolute- increase of the fitness of the individual that adopt a specific strategy, that is, the
establishment of a territory may also favor the occupier by limiting the access to the resources
(food and possible encounters with mates) of those that do not possess a territory, and not
necessarily by increasing the net availability of the needed resource (Verner 1977). Secondly, the
territory should be defendable in economics terms, that is, the benefits gained from territoriality
should offset the energy invested in the active defense against invaders. For instance one can
consider the problem of the allocation of time and energy by predators (Hixon 1980). In this
approach, the main insight is that predators have to spend time in warding off competitors,
which time cannot be used to catch preys. By taking into account the different contributions to
the allocation of time and energy, one can also derive an estimate of the optimal size of territory.
On the other hand, a different problem is the emergence of co-operation and sociability
(Alexander 1974; Allee 1958; Bergstrom 2002; Hamilton 1964; Jones 2014), and in particular in
the formation of large groups of predatory animals in a competitive environment. While it may
seem easy to see the advantages of a social behavior in some species (e.g. the nurturing of the
newborns by the whole pack, the possibility to adopt efficient hunting strategies or the establish-
ment and the defense of a territory), when dealing in particular with predators, all the obvious
benefits seem to require an already established and well functioning social structure. Thus these
features cannot be used to explain the emergence of sociability in an evolutionary context. Even
though explanations have been suggested in order to fit the Darwinian point of view with the
predominant selfishness that characterizes the fundamental state prior to the evolution of social
features (such as cooperation and “altruism”), a crucial point remains: how can a social behavior
flourish in an environment composed by only selfish individuals?
Finally, a vast part of the scientific literature in mathematical biology concerns the study of
competition as a promoter for heterogeneity and persistence in the environment (see for instance,
Comins and Blatt 1974; Shigesada et al. 1979). Here the focus is on the implications that a strong



selfish-competing behavior has on the spatial distribution of the species under consideration.
The goal in that work is to analyze populations of preys competing for a common resource.
Then, the aggressiveness of the predators may favor a richer diversification in the population of
preys and also in the populations of predators that occupy the same region. Regarding models
with competition between predators, we wish to bring to the reader’s attention an article of
Kuang et al. (2003) that considers a system of ordinary differential equations (with no space
variable). It analyses mainly the situation of internal competition between members of the same
species, while extra-specific competition is mild. It shows that this situation can be a promoter
of biological diversity among predators for the same resource.

The aim of this paper is to present a relatively parsimonious mathematical model that contains
the three aspects above. Our starting point, which we feel is also the strength of our approach,
is to consider an environment occupied by preys and predators that interact between each other
but have no a priori social structure imposed on them. By varying the degree of aggressiveness
among predators of some individuals towards others, we see that the separation of the territory
occurs spontaneously and, moreover, in many cases the aggressiveness between groups is self-
sustained by a strong increase in the economic defendability of the territory, as a new consequence
of the formation of the territory itself.

Thus, we see in many cases that the emergence of very hostile and competing groups, mean-
ing lethal encounters between individuals of different groups, even though they lead to an in-
crease of mortality, may result in many cases in a global increase of the population and a better
defendability.

The authors are indebted to J. Murray for his useful comments and for a lecture in Paris more
than twenty years ago that was inspiring for this work. They are also very grateful to W. F. Fagan
for many insightful comments and pointing out to them related literature.

Methods

Reaction-diffusion equations play a fundamental role in mathematical biology, and in particular
in the study of population dynamics. Many models have been introduced in the literature in
order to give more precise and succinct explanations of phenomena that are well documented
in these domains. In this perspective, our approach is not dissimilar to the established one, but
the novelty, as it will be clear later, stands on the questions to which we want to give an answer
with the models, and thus the mathematical instruments we use. An aspect that is crucial in
our analysis is the spatial distribution of the individuals of both the population of preys and
predators. For this reason, an approach based on a sole system of ordinary differential equations
is not sufficient for our scopes: we will need also to introduce a spatial component in the analysis.

Overview of the theoretical framework

Interactions between organisms (or groups of organisms) can be very complex, in particular
in highly differentiated environment, but we can mostly divide them in three different cate-
gories: cooperative, competitive or predator-prey. A cooperative interaction benefits (directly
or indirectly) both the agents, a competitive interaction affects negatively the two actors of the
interaction, and finally a predator-prey interaction benefits the predator while hurting the prey.



Competitive interactions between predators can be again divided into two sub-categories
(Holomuzki et al. 2010; Lang and Benbow 2013): interference competition and exploitative com-
petition (in this paper we will not consider apparent competition, as it mainly concerns preys).
In the case of interference competition, each organism directly influences negatively the fitness of
the other; this is the case, for instance, of territorial predators, that actively defend their territory
from the invasion of another predators. Differently, exploitative competition is characteristic of
two agents that compete indirectly and only because they consume the same resource; this is the
case of herbivores that eat the same plants, or predators that hunt the same prey.

From a modeling point of view, we adopt the paradigm suggested by Volterra (1928) and
Lotka (1932) to model all interactions between groups. The rationale behind the interaction pro-
posed by Volterra and Lotka is that, given two populations, the effects of the interaction between
the two is proportional to the probability of such interaction. This translates into quadratic terms
in the differential equations that describe the dynamics, given by the product of the densities of
the interaction species.

Overview of the literature

To our knowledge, Dancer and Du (1994) were the first to analyze the effect of strong competition
between two different populations: the authors propose to study the model of two competing
populations, occupying the same territory. The most important aspect of their work is to establish
a precise description of the solutions of this model when the competition parameter diverges; in
particular, they are able to show that it makes sense, from a precise mathematical point of view, to
consider the case of infinite competition, a case which, they show, implies a complete segregation
of the species and thus partition of the original region in two subregions —territories— each of
which contains only one of the two populations. A main aspect of their model is that competition
has always negative effects on the two groups: it can be shown, indeed, that the highest total
population is achieved only if the competition is absent in their model. As a result, the adaptive
significance of strong competition, in this case, can be explained only as an augmentation of
the relative fitness: more precisely, aggressiveness is a defensive response that will have only
detrimental effects on the two populations.

Dockery et al. (1998) proposed a different yet relevant model. The focus is on what is the
optimal dispersion strategy for groups of individuals competing for the same resource: the au-
thors show, quite remarkably, that if the distribution of the food source is heterogeneous (that
is, non constant in the region) and sufficiently abundant, then all the solutions of their proposed
model converge for large time to the solution that has a unique group of individuals, the one
that had the smallest diffusion rate. This lead to the famous result “slow diffusion wins”, that
had been substantially verified in empirical observations, for instance in asian carps, an inva-
sive species of the great lakes (DeGrandchamp et al. 2008). Under some assumptions, we can
show that our model is deeply linked to the model proposed by Dockery et al., though there is
a crucial difference, that is underlined more specifically in the appendix: unlike our model, the
model of Dockery et al. considers only exploitative competition, that is, competition for the food
source. This, as we shall see, will reflect in radically different results about the stability and the
convergence of solutions.

Finally, we mention the literature involved in the study of the territorial mechanisms that
characterize wolves and coyotes, initiated by the seminal contribution (Lewis and Murray 1993)
and further developed in a series of works (Giuggioli et al. 2011; Hamelin and Lewis 2010; Lewis
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et al. 1997, Moorcroft et al. 2006; Potts et al. 2012; Potts and Lewis 2014, 2016a,b; White et al.
1996a). By introducing a coupled system of equations to model location, deposition and expira-
tion of markings, Lewis and Murray succeed in describing the shape of the territories and the
disposition of the markings left by the different individuals, and in particular they manage to
describe the insurgence of some buffer zones that separate the territories occupied by the groups:
these zones can in fact be found in nature, and one expects to find more preys therein. In-
deed, preys can use these locations as safe areas. A subsequent refinement (White et al. 1996b)
introduces in this system a coupling between scent markings left by predators, predators and
preys (in this case, wolves and deers), by assuming that the deposition of markers by predators
is influenced by the presence of preys, and that densities of predators and preys follow some
laws similar to the Lotka-Volterra system. These modifications result in a model that describes
with more detail the buffer zones in between different territories, showing for instance a higher
concentration of preys in these corridors. Although the model is quite different from the one we
present here, their results suggest possible future directions of refinement of our own model.

Derivation of the model

We propose a model that is motivated in view of the previous remarks: we consider a region
(denoted henceforth with the letter R) occupied by a population of preys denoted by u and n
groups of predators denoted by w;, ..., w,. All the parameters introduced are to be considered
positive.

The individuals of the population of preys u, in their natural dynamics, diffusive in the region
R, reproduce and perish, and are hunted by the predators. As a result, the population u follows
the dynamics

(0t — DA)u = (r - %u — lé piwl) u (1a)

where D is the diffusion rate of the preys, r is the growth rate, K is the (local) carrying capacity
of the region R and finally p; are the predation efficiency coefficients, that is how an encounter
with a predator (whose probability is proportional to uw;) affects negatively the population of
preys in average. Similarly, the predators diffuse, starve in absence of preys, hunt preys, compete
internally and, more importantly, compete actively with each other (interference competition).
To accommodate these characteristics, we propose to model the dynamics of each density w; by
the equation

(at — diA)wi = (—Zi + piu — a;w; — ﬁ Zal‘]‘w]‘) w;. (1b)
j#i

Here, d; is the diffusion rate of the i-th population, /; is the loss (mortality) rate in absence of
preys, p; is the predation efficiency coefficient for group i, a;; is the competition term among
individuals of the same group, 4;; is in general the competition rate seen as how an encounter
with the j-th group affects negatively the i-th group, and f is the strength of this competition. In
the model we leave open the possibility of coefficient a;; being different from aj;, since predators
may have asymmetric responses to a confrontation (Adams 1990). We emphasize the dependence
of the coefficients on the index 7 to point out that we can take into consideration different models
at once. Indeed, this system of equation can either describe groups of con-specifics (e.g., packs of



predators), that is of the same species, or different species in competition. The former case corre-
sponds to a situation in which the coefficients in the system do not depend on i. Mathematically
this distinction does not affect our analysis, though the results that we will describe can be used
to draw different conclusions depending on the settings.

Value Description

ij indices corresponding to a particular group/density of predators
R region/environment occupied by the preys and predators

D diffusion coefficient of preys u
d;
r
K

diffusion coefficient of preys w;
reproduction rate of the preys
(mean) prey-carrying-capacity of the region R

pi rate of success of predation of a given encounter prey/predator

li loss rate/starvation rate of the predators in the absence of preys

aii competition among individuals of the same group of predators

ajj competition among individuals of the groups of predators i and j, modulated by
B characteristic size of inter-group competition

Table 1: Short description of the parameters of our model

We complete the model with non negative initial conditions which states that, at the time we
start the observation, the region R is occupied by predators and preys

u(x,0) = up(x) >0, wi(x,0) =w;o(x) >0 for any x € R.

As for the boundary conditions, we consider here the case in which the region R is isolated
from the surrounding environment: there is no flux of individuals across the boundary JR.
Mathematically the no flux condition is translated into:

Vu(x,t)-v=Vwi(x,t)-v=0  forany x € 9R and t > 0

where v is the outward normal vector at the boundary. The Neumann boundary condition has
also the advantage of minimizing spurious effects of the boundary.

Our insulation assumption on R does not play a particular role for the properties of this
system. Indeed, numerical simulations have extensively confirmed that one obtains most of
our conclusions with different types of boundary condition, for instance, when the boundary is
permeable or under Dirichlet conditions (i.e., no density on the boundary). Note that we have
conducted the mathematical analysis of the model under this boundary condition (Berestycki
and Zilio 2017).

We wish here to point out what we think is the main difference between the approaches
previously introduced and our approach to the problem. In considering a system that describes
both the preys and the predators, our aim is to show that a very simple mechanism, such as
the predation and the competition in the Lotka-Volterra frameworks, are sufficient to explain
why the predators establish territories and why the may adopt social behavior. As a result, we
do not include in our model sophisticated behaviors such as the interactions with the territory
markings. Nonetheless, the model is sufficient to describe territoriality as an emergent property
of the system not given a priori.



Results

In this section we discuss the properties of the model and the predictions that can be drawn
from it. We shall concentrate here only on the ecological consequences, leaving most of the
mathematical discussion of the model and the complete proofs of the results to a dedicated paper
(Berestycki and Zilio 2017). One of the striking features of our model here is that it describes
a variety of circumstances, from hostile to favorable environments, from a single population of
predators to the segregation in packs with territorial behavior in predators. Thus we can compare
various situations with different numbers of packs and different territorial configurations. As we
will see, we can also use it to provide reasonable estimates on the maximum number of territories
that can be formed in a region by the predators as a function of various ecological parameters.

To start with, we can observe that standard mathematical arguments show that our model
is well-posed, that is, for any non negative initial data (i.e., feasible densities of predators and
preys), there exists a unique solution of the system (1).

Weak versus strong territorial behavior

The strength of the competition parameter  has a strong influence on the spatial distribution of
predators. In particular, while for small values of f the various components of the predators can
overlap, for very large values of p we find

w;(x, t)wi(x,t) =0 aspf— +oo, i#] ()

forall t > 0 and x € R. The term w;w; has two interpretations. Firstly, heuristically, as in the
Lotka-Volterra theory, the quantity w;(x, t)w;(x, t) is proportional to the probability of individuals
the density w; of encountering individuals from density w; at location x and time . Secondly,
the product w;(x, t)w;(x, t) describes the superposition of the densities. In order to illustrate this
more clearly, let us assume that at the location and at time (x,t) we find w;(x, t)w;(x,t) = O
the, this clearly entails that at least one of the two densities w;(x,t) or w;(x,t) is equal to zero.
That is, the populations do not overlap at (x,¢). Thus we can rephrase the conclusion in (2) as
follows. Increasing the value of the competition B has two effects: the encounters between the
groups become more rare and the territories more clearly separated. The parameter j represents
the intensity of the competition. Our result shows that this parameter can be used to tune the
model in order to describe predators that have weak territorial behavior, and home ranges that
overlap extensively (small values of ) (Getty 1981; Stamps 1990) or predators that exhibit strong
territorial behavior tendencies and whose territories have sharp boundaries (large values of p)
(Askenmo et al. 1994; Eason et al. 1999; Nursall 1977).

Hostile environment

In considering the behavior of the solutions as a function of time, we already have the following
result: if it happens that for some index i the inequality Kp; < I; is verified, then independently
of the initial configuration, the i-th group of predators in (w1, ..., w,) goes extinct. That is, in
mathematical terms,

Kp; <1; implies lim w;(x,t) = 0.

t——+o0



Let us explain the biological meaning of this result. The carrying capacity K is, by definition,
the maximum amount of preys that can be locally sustained by the region R, so that Kp; is the
per capita maximum amount of preys that can be caught by a predator in the i-th group. On
the other hand, J; is the per capita loss rate in the i-th group of predators i. It follows that the
previous inequality can be interpreted as an energy balance for the i-th group: if the per capita
maximum intake of preys (read, energy) is not greater than the minimum amount necessary for
survival, the population will starve. As a consequence, we have

Principle 1 (Extinction) Keeping all the other parameters fixed , if the carrying capacity K is sufficiently
small (precisely, less than or equal to min;—; __, l;/ pi), then the environment cannot sustain any predator.

As a particular case, if the densities w; correspond to the same species of predator (and thus
the coefficients do not depend on the subscript i), the previous result implies that for small
enough K the environment cannot carry at all the particular species.

It should be pointed out that this estimate of the threshold for survival of predators does not
depend on the region R. Moreover, there is no threshold for the survival of the preys. One aspect
of this shortcoming is that, in the model we proposed, the populations of preys and predators
have continuous and not discrete values (Durrett and Levin 1994). Finer models could solve this
issue, at the cost of make the subsequent analysis less clear.

Exclusive environment

Next, we analyze the spatial behavior of the solutions of our model, with a particular emphasis
on long time asymptotic. To this end, we first introduce a characteristic number for the dynamics,

defined as
c=D—-¢G 3)

where D = min{D, d;}y; and 71 > 0 denotes the first non zero eigenvalue of (—A) in R with
homogeneous Neumann boundary conditions
—Ap = in R
=719 m 4)
ovp =0 on dR,

D and dy, ..., d, the diffusion coefficients, and G is the Lipschitz constant of the right-hand side
of the system. The constant ¢ is the combination of two opposing driving mechanisms of the
system: the (linear) diffusion term and the (non-linear) reaction term. In order to describe these
two more explicitly, let us first assume that the populations are subject to diffusion only, that is,
the individuals neither die, nor reproduce, but they only disperse on the entire region R. Then,
by the theory of diffusion processes, we have that for each equation the quantity Dy (or d;71)
represents the time scale of spatial homogenization, that is the following convergence rate holds
true

< Ce mbt

u(t,x) — areal(R) /Ruo(x)

where C > 0 and 97 > 0 (and similarly for each w;). Thus D summarizes the tendency of
the populations to spread uniformly all over the region R, the parameter min{D,d;} is the
(minimum) local diffusion rate and 7; is a global index of the geometrical properties of R,



depending on its size and shape. For instance, we observe that, if the domain is subject to an
homothetic expansion (R — AR for A > 1), then 1 (and thus D) decreases.

The constant G, on the other hand, sums up the character of the system: as it varies, the
system changes from the purely diffusion case (when G = 0), to a reaction (i.e. reproduction,
death and hunting) one (when G > 0). The larger the coefficient G, the stronger the non-linear
effects. Among other factors, we know that if the carrying capacity K or the strength of the
competition f are very large, so is the parameter G.

A classical result by Conway et al. (1978) says that, if ¢ > 0, then the diffusion wins against
the reaction and the solutions of the model converge, as time increases, to the solutions of the
corresponding ordinary differential equation system, that is

U= (r—gU-YL, pW)U,
Wi = (—li + piu —a;W; — .BZ]'#i llijo) W,.

In particular, the averaged of the solutions of the system satisfy the above equation up to cor-
rection terms that decrease exponentially in time. Therefore, there is a spatial homogenization.
The corresponding homogeneous (space-independent) model falls under the general framework
introduced by Kuang et al. (2003) in order to study biodiversity as a result of interference com-
petition. In particular, a straightforward analysis of the equilibria of the system implies that if
the competition B is small compared to the competition inside each group a;;, then mixed solu-
tions (i.e., solutions with more than one component not identically zero) are stable and attractive,
while if B is large enough compared to a;;, the only stable solutions of the system are the so called
simple solutions, that is solutions where all the components of (W, ..., W,) but one are equal to
zero. As a result, if homogenization occurs and the competition is strong enough, at most one
population of predators will settle in the region R. We have

Principle 2 (Competitive exclusion) Keeping fixed all the other parameters, there exists K’ and a’ such
that if K < K" and a;; < a', even if the environment can sustain some predators, due to the competition
they will exclude one another. That is, a stable equilibrium has at most one group of predators present in
the environment.

Favorable environments

Depending on the initial conditions and on the choices of the parameters, the model predicts
the existence of many stationary solutions that can be reached at equilibrium for large times.
A crucial factor here for this is the strength of the competition between predators. To illustrate
this, let us consider the case of the 1 + 2 model, that is the model of one group of prey and two
(identical) groups of predators; looking for the possible equilibria of the system, we analyze the
following stationary version of the model:

—DAu = (r— u — pwy — pwy) u
—dAwy = (=1 + pu — Bw,) wy
—dAw; = (=1 + pu — Bwy) w,.

For simplicity, we have discarded here the internal competition in the equation of the predators.
First of all, we can show that in some cases, even if the carrying capacity is sufficiently high,
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we may not have a heterogeneous solution, that is a solution with well separated groups of
predators: this circumstance is very similar to the Principle of Competitive exclusion. Here is the
precise statement.

Principle 3 (Homogenization) If the strength of competition B is too small or the diffusion d of the
predators is too large, the two groups of predators cannot separate and form distinct territories.

The precise quantitative statement in this principle involves the following parameter:

o i=dy — Kp—1).

—a (
1+ 25)2[(

We recall that here 7; is the first non zero eigenvalue of (—A) in R with homogeneous Neumann
boundary conditions (see (4) above). Notice that again ¢” is of the form D — G and is a counterpart
of the homogenization threshold ¢ in (3). Note that, owing to the slightly different definitions,
it can happen that ¢’ > 0 while ¢ < 0, in which case further mathematical considerations have
to be developed. In particular, if the inequality ¢’ < 0 is satisfied, we can show that the model
predicts the existence of separated solutions, and, depending on how strong the competition j
is and how large the gap between the two sides of the inequality is, there may be more than one
possible spatial configuration. Let us point out again that if K is too small, precisely Kp < I, we
have extinction of all the predators. In order to ensure the existence of solutions with separated
groups, it is sufficient to consider the case of p large: taking then the limit as § — 40 in the
inequality ¢’ < 0 we find the following

Principle 4 (Separation of the Groups) Let us assume that the inequality
dyp < Kp—1

holds. Then if the strength of the competition B is sufficiently large, there are solutions with at least two
distinct groups of predators.

This result can be interpreted as follows. From the Principle of Extinction we know that if Kp —
[ < 0, then the preys will never be enough to sustain the population of predators, which will
consequently starve. Thus, Kp — 1 > 0 is a necessary condition for the survival of the predators.
On the other hand, if dv is too large, ¢ > 0 and by the Principle of Competitive Exclusion and the
spatial homogenization phenomenon, territorial behaviors will never emerge, since the diffusion
is too large to allow it. The Principle of Separation of the Groups addresses as it were the case in
between these two scenarios, that is, when the diffusion of the predators is relatively small and
the habitat is abundant in preys, a strong competition between different groups will lead to a
region that is partitioned into different territories.

Finally, we point out that the solutions persist for p very large, that is, in the limit § — +oc0
the groups of predators segregate, that is they will not overlap in R. One particular feature of
the model is that, in the mathematical limit of segregation (8 — +o0), it is possible to give a
precise description of the location of the boundaries of the different territories. As an example,
it follows that on the boundary between the territories occupied by w; and wj, the pressure ex-
erted by the two groups is equal and opposite (mathematically, this translates in the equation
aji0,w; = a;;0,w; for the exterior normal derivatives ~here v is the outward unit normal- of the
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respective concentrations of predators in the two territories), and thus the model suggests that
the boundaries of the territories can be found by matching the pressure of the competing preda-
tors (Adams 1998, 1990, 2001; Maynard Smith 1974). Moreover, in the case in which no strong
asymmetry is present in the behaviors among the groups (that is, the groups tend to have the
same behavior with each other), at the junction of three territories, these will divide the angle in
three equal parts, thus predicting territories of hexagonal shapes in homogeneous environments,
see Figure 8 and the discussion of the numerical investigations below. This conclusion is sup-
ported by the statistical analysis of the shape of territories that singles out hexagonal shapes as
the most frequent configuration (Grant 1968) and it is also suggested by some simple behavioral
models (Maynard Smith 1974). In contradistinction with these works, we start here from our
general PDEs model and derive these qualitative properties of the solutions in a general manner.
These works further mention observations exhibiting these features and thus our derivation is
also in agreement with these observations.

Maximal capacity of predators groups

At this junction, a natural question is to know whether our model yields a qualitative information
on the maximal number of groups that can survive in a given domain. This is made clearer in
the extreme case of segregation of the groups, when the strength of the competition § is sent
to infinity, that is, when the members of each pack do not trespass other groups territories. We
introduce Pmax as the maximal number of groups of predators that can be hosted in a region R.

Principle 5 (Maximum number of group) We consider an environment R which hosts a population
of preys and some groups of predators. The maximum number of groups Pmax Of predators that can persist
in ‘R is always finite and moreover it holds asymptotically
Kop: — 1.
Prnax < area(R) max <P li _.A
47 j di

1

where the coefficients are described in Table 1, and the maximum is taken over the coefficient of the densities
involved.

In this statement, the notation Pmax S A is understood to mean that Pmax < A+ 0(A) and
o(A)/A — 0as A — oo.

We now give a biological interpretation of the result, by analyzing the dependence of the
upper bound on the various parameters of the model. We recall that A stands for right hand side
of the previous inequality.

First of all, if the region R increases in size, then the maximal number of groups increases
accordingly. For instance, if R doubles in size, so does P max; this justifies the intuition that a
larger region will host a larger number of groups than a small one.

If the carrying capacity K of the region increases, then Pmax increases too. In particular, we
find again that if K is too small, then we may have no groups of predators, or only one group,
giving a different interpretation of the principles of extinction and competitive exclusion that we
mentioned previously.

If the predation efficiency (p;) increasing or the starvation coefficient (/;) decreases, again Prmax
increases, implying for instance that smaller or more efficient predators can cover the region with
a large number of groups.
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Although the upper estimate of A is an asymptotic one, we conjecture that it is rather sharp.
As a result, we can used it to infer an estimate on the minimal size of the packs territory, as
predicted by our model. For instance, in the case of indistinguishable groups, that is groups
formed by animals belonging to the same species, we claim that the average territory size (ATS)
satisfies P

Kp—1

Thus, our model predicts a lower bound on the size of the territory of a predator/group of
predators once the values of d, K, p and | are known. The relationship between K and the size
of the territory is reminiscent of some empirical observations: indeed, as K is a rough upper
estimate of the density of preys, from the formula we infer that the size of the territories are
(at most) inversely proportional to the abundance of preys, a relation that has been already
confirmed in some observations (Hixon 1980; Meyers et al. 1979; Temels 1987).

As a final remark, we observe that as the diffusion coefficient is smaller and smaller, the
environment can sustain more and more groups of predators.

ATS

Aggressiveness and Economical Defendability

We can state the second fundamental result of the paper, which is concerned with the case of
very large K. Fixing all the parameters of the model but the carrying capacity K, and taking the
competition strength p very large, we have

(i) if the carrying capacity K is small enough, then the only stationary solutions of the model
contain at most one group of predators. This is a consequence of the Extinction Principle;

(ii) if the carrying capacity K is larger than a threshold, then there are solutions that contain
also a group of predators, but, depending on the other parameters, the solutions with more
than one group of predators either do not exists or are very small and converge to 0 as the
strength of the competition  diverges. This is a consequence of the Competitive Exclusion
Principle;

(iii) for even larger values of K, there are co-existing solutions, that is, solutions with more than
one group of predators;

(iv) finally, if K is sufficiently large, the co-existing segregated solutions, that is, the solutions
with more than one group of predators and with § very large, have a larger total population
of predators than the solutions with just one group of predators.

In particular we have that (i) is a consequence of the Extinction Principle; (ii) is a consequence
of the Competitive Exclusion Principle; (iii) follows from the Separation of the groups Principle.
The last point (iv) deserves some comments: we already recalled that, in the model of Dancer
and Du (1994), the competition has only negative effects on the population, in terms of the total
number of individuals. On the contrary, what the last scenario with K very large implies is
the following. In the model of combined dynamics of predators and preys, the total number of
predators in the case of very strong competition (the predators are strongly territorial and very
aggressive in the defense) is higher in the case of a division of the population into two (or more)
groups than in the case in which the territory is occupied by only one group of predators friendly
to each other.
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Figure 1: numerical simulations of the model, showing the impact of the competition parameter
B on the distribution of predators (red) and preys (blue). Lighter colors correspond to small
values of B, and darker colors to higher values. We see that the two groups of predators separate
more clearly as  increases.

Moreover this result, when combined with the estimate of the maximal capacity, implies that
(in the limit of strong competition) there exists a solution that maximizes the total number of
predators in the region R, and that if the parameters are correctly chosen, this solution has
necessarily more than one group of predators.

This translate to the following principle

Principle 6 (Aggressiveness generates Economic Defendability) If the competition rate B and the
carrying capacity K are sufficiently large, the population of predators is maximized by a solution that has
more than one group of predators.

In Figures 1 and 2 we illustrate with the aid of some numerical simulations and a graphical
schematization the content of the previous results. Figures 3, 4 and 5 allow us to give a more
intuitive interpretation of this as a succession of three distinct phenomena: peaceful predators
engage in aggressive behaviors (Figure 3), a buffer zone is created between the two and the
preys thrive in it (Figure 4), the net increase of the population of preys is beneficial to the two
antagonistic populations of predators (Figure 5).

An important question, that remains open, is to give an estimate on the size of the territories
that maximize the total population of predators. Even though as of now we do not have rigor-
ous mathematical results in this direction, extensive numerical simulations suggest that, if the
predators are indistinguishable, then the average size of the territories that maximizes the total
population of predators (ASmp) satisfies

ASmp Kp—l'

This is the same asymptotic expression that we have conjectured for the minimal territory size,
up to the proportionality constant that in this case is greater. Therefore we believe that this
estimate for the average territory size is rather precise. This question calls for further research.
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Figure 2: a graphical representation of the Principle Aggressiveness generates Economic Defendabil-
ity: if the conditions are correct, the insurgence of territorial behaviors in predators can aug-
mented the total predator population.
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Figure 3: when the strength of the competition increase, the densities of predators segregated (as
in Equation (2)). If there were no feedback from the population of preys, the segregation would
have a negative impact on the total population of predators.
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Figure 4: in the area between two territories, the predators are less abundant. A buffer zone is
then created, where the preys can thrive and their total population increases.
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Figure 5: the predators hunt the local peak of population of preys, and this results in a net gain.

Numerical investigations for the system of 1 or 2 predators in dimension 1

Some numerical simulations illustrate the predictions resulting form the facts that we have es-
tablished mathematically. We start by analyzing the behavior of the solutions of system of 1+2
components, that is, the case of one population of preys and two of indistinguishable predators,
and we also consider the one dimensional version of the model in the region (—L, L) with L > 0:
this circumstance is not only indicative of the one dimensional case, but it can also be used to
draw conclusions for the two (or higher) dimensional model; indeed, once we have a solution
in (—L, L) it can be extended to a solution in the square (—L,L) x (—L, L) just by considering it
constant in the new dimension. The system is described altogether by 7 parameters and by the
physical dimension of the domain. However, up to a scaling and a change of variables, we can
reduce the system to involve only 4 parameters. This system reads:

_u//:f,(l_%u_wl—wz)u,
o ~T(-1hu—fug)w, R = (-1
—wl =T (~1+u— pw)ws,

(here the notation 1" stands for spatial derivatives of the second order of the function &) where
the new effective coefficients are defined as

7_£ 112 Kp - r

This system possesses some obvious constant solutions, whose stability can be inferred by a
simple linearization. Since the computations are rather lengthy, here we only report the results,
leaving the full details to the mathematical paper (Berestycki and Zilio (2017)). Indeed we have
the solution

Uu=w =wr,=20

which corresponds to an empty environment, and it is unstable, as the intuition suggests: preys
introduced in a fertile but unoccupied territory will rapidly thrive in it. The solution

u=K, wi=w, =0

that is, an environment occupied only by preys and no predators, is stable in K < 1 (a conse-
quence of the Principle of Extinction) while it is unstable if K > 1, since new predators will hunt
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the abundant preys and thrive. The solution
u=1,w=1—35, wpy =0 5)
r K’

(and the one obtained by interchanging w; and w,) which is meaningful only if K > 1 (that is
Kp —1 > 0) corresponds to the case of an environment occupied by a population of preys hunted
by a unique group of predators. This solution is stable if § > 0, since the predominant predators
would defend their environment from external competitors. Finally, we have the solution

_ K2+p) K—-1

YT B kM TP T Bk

which describes the case of one group of preys and two groups of predators that are in competi-
tion with each other, but when territoriality has not emerged, since the two groups are spatially
undifferentiated: this suggests that the solution is always unstable, as we eve int the mathematical
paper.

Here we are focus our attention on solution (5), that is one group of preys and one group of
predators. We can use this solution in comparison with the solution with two groups. According
to our results, for K and B very large, the solution with two groups of predators has a larger
total population. To see this, we have conducted some numerical simulation, that are reported
in Figure 6, of the limit system that one obtains by letting K and B go to +co. We have plotted
the ratio of the total population of the predators (top) and preys (bottom) as a function of the
remaining free parameters 7 and I. As the graphs show, the ratio is always greater than one (as
from the Principle of Aggressiveness generates Economic Defendability) but large values of I and small
value of 7 seem to enhance this phenomenon: in particular for 7 ~ 3.5 and I ~ 0.1, the ratio is 1.5,
meaning that in this case the population of predators is 50% higher than if there was only one
group of (non competing) predators. The first plot in Figure 6 shows also a striking property of
the model: by keeping fixed all the parameters in the original formulation but L, we see that the
scaled parameter K and 8 are constant in L, while 7 and I both depend linearly on L2. If follows
that varying L corresponds to moving on the plane (7, [) along lines passing from the origin. The
concavity of the isolines of the total population of predators translates then into the the existence
of a (unique) length L of the territory that maximizes the total population of predators. In a
sense, we then obtain a result that is similar to the ideas of Hixon (1980).

We now turn to the study of the dependence in K and 8. We choose for instance the values
7 = 3.5 and | = 0.1 for the other parameters and look at the behavior of the solution for large
values of the other two parameters. In Figure 7 we have represented again the ratio of the
population in comparison with the reference case: the non monotonic behavior of the solution
for small values of K and B is a consequence of the Principle of Homogenization: in fact, for some
ranges of the parameters, the diffusivity of the populations is too strong for them to separate.
Beyond some threshold value, the two groups separate and start to gain in the total number of
individuals as they sharply segregate.

Next we look at the shape of territories predicted by the model. Figures 8 and 9 show a
representation of a solution to the system with 9 indistinguishable groups of predators competing
in the same region for the same prey. On the left, we show the distribution of predators, on
the right the distribution of preys. In order to separate clearly the territories, we have chosen
very aggressive predators (B large). It can be shown mathematically that the lines dividing the
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Figure 6: Isolines of ratio of the total population of predators (top) and preys (bottom) for the
solution with two groups over the corresponding quantity for the solution with only one group.
The parameters 7 and [ are plotted in the axes. In the predators plot, we have also included some
lines emanating from the origin. These correspond to what happens when we set all the other
parameters in the model but we vary the length L. By the convexity of the isolines we can deduce
that there exists one value of L that maximizes the total population of predators.
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Figure 7: Isolines of the ratio of the total population of predators (top) and preys (bottom) in the
solution of the model with 7 = 3.5 and I = 0.1 and K and p as parameters.
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Figure 8: Shape of the territories predicted by the model in an homogeneous environment. On
the left, the distribution of 9 groups of predators, on the right the corresponding distribution
of preys. Under each plot, the color scale: darker colors correspond to lower densities, brighter
colors to higher densities.

different territories are regular, and when more than two regions meet, the curves reaching the
common boundary point divide the angle in equal parts: in this example the angles are all
of 271/3, and thus the territories look hexagonal in homogeneous environments (Grant 1968;
Maynard Smith 1974). As it is evident from the picture, the preys tend to accumulate on the
buffer zones that are formed at the boundary of the territories: there the predators are fewer
than elsewhere and the preys can reproduce more. Consequently, also the distribution of the
predators tends to increase along the boundary of the territories, since it is there that the preys
are more abundant. These two effects combined explain the augmentation of the total population
of predators, even though the predators are very competitive. We also point out that in Figure
9 the diffusion coefficients are different, but the aggressiveness promotes diversity: indeed the
solution does not converge (as in the model of Dockery et al. 1998) to the solution with only one
non trivial component (the one with the lowest diffusion). On the contrary it seems that the most
diffusive groups are the ones that gain territory, while the ones with lower diffusion retreat (in
this case, for instance, the center territory is occupied by the lowest diffuser in the region).

Discussion

Our model suggests that the main factor that discriminates between the different scenarios is
the carrying capacity of preys K for the region. For small values of K, the region cannot sustain
predators, for larger values it can sustain a single group of predators, and if K is sufficiently large
it can sustain more than one group, and these can maximize their total population by adopting
territorial behaviors. As a result, our model predicts that territorial behaviors should be more
common in environments rich in preys, while territory should be spread out in inhospitable envi-
ronment, and it also suggests a inverse proportionality between the average size of the territories
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Figure 9: Same as Figure 8 but with different diffusion coefficients for each group.

and the abundance of preys. Thus, our model provides a theoretical framework that accounts for
observations reported in earlier works (Hixon 1980; Meyers et al. 1979; Temels 1987). We indicate
some directions of alternative possible observations that could be used to test the validity of our
theory.

From the presence of territorial animals in deserts (Costa 1995) we infer that the principle of
Aggressiveness generates Economic Defendability is not the only factor responsible for the emergence
of territoriality. For instance the relative increase of the fitness of the individuals that adopt
territorial strategies can play an important role.

It should be pointed out that our model suggests that the segmentation of the population in
competing groups yields a clear advantage for the total population. This advantage is a con-
sequence of the aggressive behavior because it leads to the formation of buffer zones between
different territories. And in these buffer zones, preys thrive, providing a more favorable envi-
ronment as well to the predators who feast on them. Once these zones are established, other
mechanisms (such as the deposition of markings) can take over, thus justifying a posteriori the
models of Lewis and Murray (1993) and White et al. (1996b). As a matter of fact, the deposition
of markings can be interpreted as a proxy for the direct competition between individuals.

Moreover, a key mechanism that we recognize through our model is a positive feedback loop
between the spatial distribution of predators (territorial behavior) and local abundance of preys.
If, for some reason, the preys (read, the main spatially distributed resource of the predators) is
not strongly affected by the distribution of the predators, this mechanism would not be in place
and thus our model would fail to predict the emergence of territorial behaviors. In this case, that
is when the distribution of preys is a given datum (see for instance the Appendix), the model
can still be used to understand the shape of the territories, but the emergence of any territorial
behavior can not be as easily inferred.

There are two key aspects that we have not yet analyzed: the impact of the landscape inho-
mogeneities or natural boundaries, such as mountains and rivers, and the dynamic evolution of
territories. Regarding the former, for instance, the presence of less hospitable areas in the region
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may boost or impede the feedback loop, by forcing the boundaries of the territories in some
specific locations (Eason et al. 1999). In practical terms, this can be accomplished by (a) changing
the diffusion component of the model, by making it more difficult to the animals to reach some
of the areas, (b) letting the parameters of the models, in particular the reproduction rate and the
prey-carrying-capacity, depend on the location x.

Evidently, these adjustments are specific to the particular case, but numerical simulations
suggests a natural sensitivity of the location of the boundaries to these factors. With respect to
the dynamic evolution of the territories, the model the we have proposed here is by its nature
dynamical, and thus it can be used to address questions like how territories change as a result of
a decline in the population of predators (Potts et al. 2013).

Conclusion

In this paper, we propose a model that gives a possible explanation of why territoriality of
hostile groups is formed by certain predators. In some sense this is simplest one to describe this
phenomenon.

We consider a predator-prey situation in which there is a single prey (representing an array
of resources) and in which the predators may break up into several highly hostile groups. In the
limit of very strong aggressiveness, the different groups divide up the spatial environment into
segregated territories. Here we further analyze the outcomes of such segregation. We are thus
able to compare the total sizes of the population in the case when there is no hostility between
the groups and the cases when the population is divided up into very hostile groups.

Our first finding is that a given environment can only support a certain maximal number
of groups. We further derive a bound on this maximal number of groups that depends on the
various parameters of the model. In particular we show that this bound increases with respect to
the carrying capacity of the environment for the preys, the predation efficiency, and the available
surface while it decreases with respect to the mobility of predators and the decay rate of the
predators in absence of preys .

The second finding is a principle that we call here: aggressiveness generates economic defend-
ability. By analyzing the dependence of the solutions of our model with respect to the different
parameters, we establish that if the prey carrying capacity is sufficiently large, the total number of
predators hosted in a region is maximized when the predators split into several highly competing
groups. This is related to the effect that territories generate buffer zones where the preys strive
and can then generate an overall positive effect on the size of the population that offsets the losses
caused by the strong hostility between groups. It has been argued (Brown 1964) that in order for
territoriality to emerge, there need to be aggressiveness between con-specifics and an economics
advantage in having divided territories. What we show here is that the con-specific aggressive-
ness between groups yields an economic gain in the sense of the total size of the population.
Thus, we consider here aggressiveness and selfishness of the predators as the only explaining
factors, and maximization of the total population of predators as a driving mechanism. Within
this framework, the formation of several highly hostile groups dividing up the environment into
several well defined territories (as observed in nature) appears to be advantageous.
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Appendix: A link with the model of Dockery et al. (1998)

We point out here the link of our model to the model of Dockery et al. (1998). In particular
we want to emphasize the crucial difference that makes it so that our model predicts a different
behavior for the dynamics of the densities.

The model here reads as the following system of differential equations

(3 — DAYu = (r — Lu— Y| piw;) u
(0 — diN)w; = (—li + piv — aiiw; — B Y4 ﬂijw]') Wi
Vu-v=Vuw;-v=0.

Let us consider the system when introducing a simplifying assumption: the density of preys u
evolves very rapidly but diffuses much slower than the predators. As a result, we assume that at
each t > 0 the density u solves

r L K L
r—Ru—i;piwizo , that is, = r—;piwi .

Substituting this formula in the equation satisfied by w; yields

(0 — did)w; = (Kpi — i aiw; — % 2 Pivj — P 2“1’]‘“’1‘) wi
j=1 j#i

We can further simplify the equation for instance by assuming that the groups of predators are
similar. That is, we let p; = p and [; = [, and moreover we assume that the internal competition
in each group is negligible, which corresponds to a4;; = 0. By doing so, up to a scaling, we find
that the densities satisfy the system

(at — dl-A)wZ- = (ﬂ — i wj — ‘B Za,-]-w]) wj

j=1 j#i

where we let a = Kp — [.

We start by observing that if the strength of the competition B is set to 0, we have then
obtained exactly the model of Dockery et al. (1998). This tells us that the case of non direct
competition corresponds to agents that are engaged only in exploitative competition, as they
compete only through the interaction with the preys (or food), while the term related to f is
exactly responsible for the description of interference competition.
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