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Abstract. We consider a model that we proposed to study of environments populated by both preys and

predators, with the possibility for the predators to actively compete for the territory. For this model we study
existence and uniqueness of solutions, and the asymptotic properties in time, showing that the solutions have

different behavior depending on the choice of the parameters. We also construct heterogeneous stationary

solutions and study their behavior in some singular limit, we then use these informations to study some
properties such as the existence of the solution that maximizes the total population of predators, which in

some circumstances may contain more than one group of competing predators.

1. Introduction

In a recent paper [BZa] we have proposed a model to describe the emergence of territoriality in predatory
animals: specifically, our aim was to show if aggressiveness among predators is a key mechanism in order
to explain territorial behaviors. To accomplish this, we consider a given region Ω ⊂ Rn with n ≤ 2 (the
restriction on the dimension is purely for modeling reasons) occupied by N + 1 densities, where one of
the densities, referred to by the letter u, is composed of preys, while the other N densities, denoted by
the symbols w1, . . . , wN , are predators. Each of the densities evolves in time following a natural law of
Lotka-Volterra type. As a result, the model proposed in [BZa] is synthesized in the system

(1.1)

wi,t − di∆wi =
(
−ωi + kiu− µiwi − β

∑
j 6=i aijwj

)
wi

ut −D∆u =
(
λ− µu−

∑N
i=1 kiwi

)
u

for (x, t) ∈ Ω× (0,+∞), completed by homogeneous Neumann boundary and smooth initial conditions. The
parameters of the model are easily explained: some terms in the equations model internal mechanism in the
populations

• D, d1, . . . , dN are the diffusion rates of the different populations, and thus are always considered
positive in the following;

• λ > 0 is the reproductivity coefficient of the preys, and µ ≥ 0 stands for the possible saturability of
the environment due to an excess of preys;

• ωi is the death coefficient of the predators that takes into account the starvation caused by the
absence of the prey u, and µi takes into account possible saturation phenomena in the predator
populations (for instance, an internal competition between member of the same density; typically
we will not consider this term relevant in the following).

The other terms are, on the other hand, responsible for the interaction between different densities

• k1, . . . , kN govern the predation rates, that is the success of the predator wi in catching the prey u
over the probability of an encounter;

• the elements aij > 0 represent how the presence of the density wj affects the density wi, and the
particular choice of the sign suggest that we only consider competing interactions. The parameter
β ≥ 0 on the other hand expresses the strength of the interaction: higher values of β correspond to
more aggressive predators.
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Similar models have already been introduced in the ecological and mathematical literature, starting from
the seminal paper by Volterra [Vol28] on predator-preys interactions, to the more recent contribution [DD94]
that started the study of strongly interaction systems of elliptic equations (in that case, modeling populations
of competing predators), the study on the evolution of dispersal by means of systems of many interacting
predators [DHMP98], and the papers on the qualitative properties of the solutions to such systems [CTV05a,
CKL09, DWZ12]. The novelty in our model, that complicates the analysis but allows for more profound
results, is the inclusion in the equation of the equation for the preys and of the competition between the
predators. A more in depth comparison with the results in the scientific literature can be found in [BZa], to
which we refer the interested reader.

The main results in this paper regarding the model (1.1) are summarized as follows (see also the following
sections for more general statements of the results). For sufficiently smooth and positive initial data, the
system (1.1) admits a unique, bounded and smooth solution, defined for all t ≥ 0 (see Lemma 2.1). The
competition is a driving force in the heterogeneity of the set of solutions, indeed the set of stationary solutions
of the system is collapse to the set of constants if β is small (see Proposition 2.2), and is very rich for β large
(see for instance Theorems 3.8, 3.11 and 3.12), but under some assumptions the asymptotic behavior can
be described accurately (see Lemma 2.1 and Proposition 2.2). The solutions of the stationary system are
regular, independently of the strength of the competition, and they converge to segregated configurations
when β → +∞ (see Propositions 3.1 and 4.1), and this allows us to define also solutions to (1.1) in the case
β = +∞. Aggressiveness may help to resist and invasion by a foreign group, without any specific request on
the parameters of the invader (see Propositions 2.4 and 2.8).

On the other hand, the strong competition limits the number densities that can survive in a given domain,
indeed we have

Theorem (see Theorem 4.5). For a given smooth domain Ω ⊂ RN , under some uniform-in-N assumptions
on the values of the parameters in the model, there exist N̄ ∈ N and β̄ > 0 such if k > N̄ and β > β̄ then
the set of all non negative solutions to (1.1) contains only solutions of the form

‖uβ − λ/µ‖C2,α(Ω) + ‖(w1,β , . . . , wN,β)‖C0,α(Ω) = oβ(1)

for every α ∈ (0, 1).

And finally, we can show that, under some assumptions on the coefficients, there exist N ∈ N0 and a
solution (w1, . . . , wN , u) of (1.1) which maximizes the total population of predators, that is

Theorem (see Theorems 4.6 and 4.10). For any given smooth domain Ω, under some uniform-in-N as-
sumptions on the values of the parameters in the model, there exists a number N̄ ∈ N and a solution
(w1, . . . , wN , u) of (1.1) with N̄ + 1 non trivial components (possibly with β = +∞) that maximizes the
functional

P (w1, . . . , wN , u) =

∫
Ω

N∑
i=1

wi

among the set of all non negative solutions of (1.1). Moreover, if Ω = (a, b) ⊂ R and µ is sufficiently small,
the maximum is attained by a solution with more than one component of predators, that is, N̄ ≥ 2.

An immediate consequence of this is that competition between predators can be beneficial not only for
the preys, but also for the predators themselves.

Structure of the paper. The paper is structured as follows: in Section 2 we consider some basic properties
of the system, such as existence and regularity of solutions, together with some asymptotic properties of
the system, concentrating ourself on the stability properties of specific solutions. In Section 3, thanks to a
bifurcation analysis, we will show that the set of stationary solutions is very rich, and we also give a precise
description of the solutions for large competition. Finally, in Section 4 we investigate some properties of
the system with a large number of components, and we show in particular the existence of solutions which
maximize the integral of the densities wi.
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2. General properties of the solutions

In this section we investigate some basic properties of the system: in particular we establish existence and
uniqueness results for the solutions, we analysis the long time behavior of the set of solutions, and we also
consider some stability properties of a special class of solutions, those that correspond to the case of only
one predator and one prey. We recall the system

(2.1a)

wi,t − di∆wi =
(
−ωi + kiu− µiwi − β

∑
j 6=i aijwj

)
wi

ut −D∆u =
(
λ− µu−

∑N
i=1 kiwi

)
u

in the domain Q := Ω×(0,∞), with Ω b Rn open, smooth, bounded and connected, completed by boundary
and smooth initial conditions

(2.1b)

{
∂νwi = ∂νu = 0 on ∂Ω× (0,+∞)

wi(x, 0) = w0
i (x) ≥ 0, u(x, 0) = u0(x) ≥ 0 on Ω× {0}.

We start with the following existence result

Lemma 2.1. Let (w0
1, . . . , w

0
N , u

0) ∈ C0,α(Ω) be a non-negative initial condition for the system (2.1). There

exists a unique solution (w1, . . . , wN , u) ∈ C2,α
x C

1,α/2
t (Q) for all α ∈ (0, 1) which is defined for all t > 0;

moreover the solution is bounded in L∞(Q) and for any ε > 0 there exists T = Tε > 0 such that

sup
(x,t)∈Ω×[T,+∞)

u(x, t) ≤ λ

µ
+ ε

sup
(x,t)∈Ω×[T,+∞)

wi(x, t) ≤
λki − µωi

µµi
+ ε.

Consequently, if there exists and index i ∈ {1, . . . , N} such that λki ≤ µωi, then

lim
t→+∞

sup
x∈Ω

wi(x, t) = 0.

As a result, in the following we shall also assume, for simplicity, that

(H) the relation λki > µωi holds for any i = 1, . . . , N .

Proof. The existence of the solutions for t ∈ [0, t0] with t0 > 0 small follows by standard arguments, since
the semi-linear part of the system is locally Lipschitz continuous: in order to extend the existence result for
all time t > 0, it suffices to show an a priori L∞ uniform bound on the solutions.

First of all, we can observe that each equation of the system (2.1) is satisfied by the trivial solution: as
a result, the comparison principle applied to each equation implies that the solutions, when defined, are
strictly positive for positive t. Using this information, we focus our attention on the equation satisfied by
the density u, that is

(2.2)

{
ut −D∆u =

(
λ− µu−

∑N
i=1 kiwi

)
u

u(x, 0) = u0(x).

Let U ∈ C1(R+) be the solution of the initial value problem{
U̇ = λU − µU2 for t > 0

U(0) = max{λ/µ, supx∈Ω u
0(x)} > 0.

The family of solution U is decreasing in t > 0 and U(t) → λ/µ as t → +∞: as a result, for any ε > 0
there exists Tε ≥ 0 finite such that U(t) ≤ λ/µ + ε for any t ≥ Tε. By a direct inspection, since each wi
is non-negative, we can observe that the solution U is a super-solution to the equation (2.2), and by the
comparison principle we have u(x, t) ≤ U(t) for all x ∈ Ω, and it is then bounded uniformly. Taking into
account this information, we see that each wi satisfies

(2.3)

{
wi,t − di∆wi =

(
−ωi + kiu− µiwi − β

∑
j 6=i aijwj

)
wi

wi(x, 0) = w0
i (x).
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Using a similar reasoning as before, we can introduce the auxiliary function Wi ∈ C1(R+) solution to the
initial value problem {

Ẇi = (−ωi + kiU − µiWi)Wi for t > 0

Wi(0) = supx∈Ω w
0
i (x) > 0.

Clearly Wi is uniformly bounded in t and moreover, Wi(t)→ (λki−µωi)/(µµi) as t→ +∞: we deduce that
for any ε > 0 there exists Tε ≥ 0 finite such that Wi(t) ≤ (λki − µωi)/(µµi) + ε for any t ≥ Tε. Moreover,
again by direct inspection, since each wi is non negative and u ≤ U , see that Wi is a super-solution for (2.3)
and thus wi is bounded uniformly.

The previous uniform upper bounds are enough to ensure that the solution can be extended for all time
t > 0 and also to conclude the asymptotic estimates. �

Before continuing we recall a result by [CHS78] about the asymptotic behaviour in time of solutions to
system of reaction diffusion equations. We let L be the Lipschtiz constant of the semi-linear term in (1.1)
on the invariant region of Lemma 2.1, that is, letting

F (s1, . . . , sN , S) =

 (
−ωi + kiS − µisi − β

∑
j 6=i aijsj

)
si(

λ− µS −
∑N
i=1 kisi

)
S


we define

L = sup

{
|∇F (s1, . . . , sN , S)| : 0 < si <

λki − µωi
µµi

, 0 < S <
λ

µ

}
.

We observe that, thanks to the assumptions, L is finite and positive. We also let

d = min{d1, . . . , dN , D}
and γ1 as the first non trivial (that is, positive) eigenvalue of the Laplace operator −∆ in Ω with homogeneous
boundary conditions. For any solution (w1, . . . , wN , u) of (1.1), we let

w̄i(t) =
1

|Ω|

∫
Ω

wi(x, t)dx, ū(t) =
1

|Ω|

∫
Ω

u(x, t)dx.

Applying [CHS78, Theorem 3.1] to our system (1.1) we have the following result on the asymptotic behavior
of the solutions for large time.

Proposition 2.2. Let

σ = dγ1 − L.
If σ > 0, then for any non negative initial condition (w0

1, . . . , w
0
N , u

0) ∈ C0,α(Ω), the corresponding unique
solution of the system (2.1) converges exponential towards spatially homogeneous solutions, that is, for any
0 < σ′ < σ there exists C > 0 such that

N∑
i=1

‖∇wi‖L2(Ω) + ‖∇u‖L2(Ω) ≤ Ce−σ
′t

N∑
i=1

‖wi(·, t)− w̄i(t)‖L∞(Ω) + ‖u(·, t)− ū(t)‖L∞(Ω) ≤ Ce
−σ′t/n.

Moreover, the vector (w̄1, . . . , w̄M , ū) solves the system of ordinary differential equationsw̄
′
i =

(
−ωi + kiū− µiw̄i − β

∑
j 6=i aijw̄j

)
w̄i + gi(t)

ū′t =
(
λ− µū−

∑N
i=1 kiw̄i

)
ū+ g(t)

with

w̄i(0) = |Ω|−1

∫
Ω

wi(x)0dx, ū(0) = |Ω|−1

∫
Ω

u(x)0dx.

and
N∑
i=1

|gi(t)|+ |g(t)| ≤ Ce−σ
′t.
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Proof. The proof is a straightforward application of [CHS78, Theorem 3.1]. We only observe that by Lemma
2.1 we know that from any positive initial data and any ε > 0 there exists Tε > 0 such that the corresponding
unique solution is contained in the region{

0 < wi(x, t) <
λki − µωi

µµi
+ ε, 0 < u(x, t) <

λ

µ
+ ε,∀x ∈ Ω

}
for all t ≥ Tε. Now, if σ > 0, by regularity of F for any ε > 0 sufficiently small

σ′ = dγ1 − sup

{
|∇F (s1, . . . , sN , S)| : 0 < si <

λki − µωi
µµi

+ ε, 0 < S <
λ

µ
+ ε

}
> 0

and we can apply [CHS78, Theorem 3.1] to obtain the sought exponential estimates. �

The important consequence of the previous proposition is that the behaviour of the solutions, in the
regime σ > 0 is well described by the corresponding system of ordinary differential equations, and also give
us a complete characterisation of the set of stationary solutions of (2.1), which is then given by the (spatially
constant) solutions of F (w1, . . . , wN , u) = 0. For instance, by studying the stability of the stationary solutions
(see Proposition 2.4 and Lemma 3.4 below) we will see that in this case, when β > 0 the only stable ones are
those that have u > 0 and only one component of (w1, . . . , wN ) non trivial (and positive). We finally observe
that the condition σ > 0 can be violated in three different ways: (i) lowering the diffusion coefficients, (ii)
enlarging the domain or (iii) augmenting the Lipschitz constant L. This last possibility, which is the one
that we explore later, can be enforced for instance by taking β large enough.

We now start investigating the equilibria of the system, in particular we want analyse what is the impact
of the competition parameter on the possible heterogeneity of the solutions of the system. To do this, we
first recall the fundamental result by Dockery et al. [DHMP98] on a related model

(2.4)

{
wi,t − di∆wi =

(
a(x)−

∑N
j=1 wj

)
wi in Ω× (0,+∞)

∂νwi = 0 on ∂Ω× (0,+∞)

where a is a smooth non constant function such that the principal eigenvalue of each of the elliptic operators{
−di∆w = aw + λw in Ω

∂νw = 0 on ∂Ω,

denoted by λ(di, a), is strictly negative (implying, in particular, the instability of the trivial solution).
Exploiting the particular symmetric structure of the interaction/competition term, Dockery et al. were
able to show that the only asymptotically and hyperbolic stable equilibrium of the system is the stationary
solution that has all the components wi trivial except for the one with the smallest diffusion coefficient di.
Moreover, the same result holds if we introduce a small mutation term in the system, which in terms imply
also an evolutionary advantage for small diffusion rates. The classic interpretation of this result is that, since
the densities wi in (2.4) are equivalent if not for the diffusion rates, the density which can concentrate more
on favorable zones will benefit.

In what follows, we shall show that this is not the case for the model we are considering, and in particular
we shall prove that for β sufficiently large, all the solutions that have only one nontrivial density of predators
are asymptotically and hyperbolic stable.

Remark 2.3. In order to justify the link between the model (2.4) and our model (2.1), let us consider the
limit case of (2.1) in which the density u has a very fast dynamic with respect to the other components, that
is, let us assume that for each t > 0, the density u reaches instantaneously its non-trivial inviscid equilibrium
state,

λu− µu2 − u
N∑
i=1

kiwi = 0 =⇒ u =
1

µ

(
λ−

N∑
i=1

kiwi

)
.

Substituting the previous identity in the equations satisfied by wi we obtain

wi,t − di∆wi =

kiλ
µ
− ωi −

ki
µ
wi −

∑
j 6=i

(
βaij +

ki
µ

)
wj

wi
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In the simplified case ki = µ, ωi = ω and β = 0, we obtain finally

wi,t − di∆wi =

λ− ω − N∑
j=1

wj

wi =

a− N∑
j=1

wj

wi

where a is, in this oversimplified case, a constant: later we shall consider a generalization of the model that
avoids this inconvenience. More details can be found in [BZa].

We have the following

Proposition 2.4. For a fixed i ∈ {1, . . . , N}, let W be the stationary solution of (1.1) which as only the
i-th densities of predator which is nontrivial, than W is constant and W = (0, . . . , w̃i, . . . , 0, ũ) with

w̃i =
λki − µωi

k2
i

, ũ =
ωi
ki
.

There exists β̄ ≥ 0 such that if β ≥ β̄ then W is asymptotically and hyperbolic stable with respect to
perturbations in C2,α(Ω). More explicitly, β̄ must satisfy the system of inequalities

β̄ ≥ kj
ajiw̃i

(
ωi
ki
− ωj
kj

)
∀j 6= i.

Proof. First of all, by [Mim79, Theorem 1] and [CS77], we have that the only solution of the system with
only the i-th density of predator non trivial is the constant solution W . The study of the stability of this
solution is based on a simple analysis of the linearized system around it: we consider the Fréchet differential
around W of the operator describing the system, which is given by

L(W )[w1, . . . , wN , u] =


−di∆wi − kiw̃iu+ βw̃i

∑
j 6=i aijwj

−dj∆wj +
[
kj

(
ωj
kj
− ωi

ki

)
+ βw̃iaji

]
wj for j 6= i

−D∆u+ µωiki u+ ωiwi

for all (w1, . . . , wN , u) ∈ C2,α(Ω) with homogenous Neumann boundary conditions. To ensure the stability
of the solution we need to show that the spectrum of L is contained in C+ = {z ∈ C : <(z) > 0}, that is for
any (w1, . . . , wN , u) 6= 0 and γ ∈ C

L(W )[w1, . . . , wN , u] = γ(w1, . . . , wN , u) ⇐⇒ <(γ) > 0.

In the previous system, the components corresponding to j 6= i are decoupled from the others, and thus their
presence does not compromise the stability of W if and only if

kj

(
ωj
kj
− ωi
ki

)
+ βw̃iaji > 0 ∀j 6= i

which gives the condition established by the proposition; indeed, under this assumption the components wj
with j 6= i are necessarily trivial. Let us show that this condition is enough to ensure the stability: we
suppose that the previous system of inequalities holds but there exist (w1, . . . , wN , u) 6= 0 and γ ∈ C with
<(γ) ≤ 0 solution to

L(W )[w1, . . . , wN , u] = γ(w1, . . . , wN , u).

Then necessarily wj = 0 for all j 6= i, and the system is reduced to

(2.5)


−di∆wi = γwi + kiw̃iu

−D∆u = −ωiwi +
(
γ − µωiki

)
u

∂νwi = ∂νu = 0 on ∂Ω

Since any weak solution to the previous system is regular, the stability in C2,α(Ω) can be deduced from the
solvability of the system in H1(Ω). To analyse it, let {(γh, ψh)}h∈N the spectral resolution of the Laplace
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operator with homogeneous Neumann boundary condition in Ω (let us recall that γ0 = 0 and γh > 0 for
h > 0); since {ψh}h∈N is a complete base of L2(Ω), we can write

wi =

∞∑
h=0

ahψh and u =

∞∑
h=0

bhψh

as series converging in L2(Ω). Inserting these relations in (2.5) and using the orthogonality of the eigenfunc-
tions, we see that it is equivalent to the sequence of algebraic eigenvalue problems{

diγhah − kiw̃ibh = γah(
Dγh + µωiki

)
bh + ωiah = γbh

for h ∈ N.

By direct inspection, we can observe that ah = 0 if and only if bh = 0. Thus, solving the first equation in bh
and substituting the result in the second, we find that γ must be a solution to(

Dγh + µ
ωi
ki
− γ
)

(diγh − γ) + kiw̃iωi = 0

that is

γ =
1

2

((D + di)γh + µ
ωi
ki

)
±

√(
(D + di)γh + µ

ωi
ki

)2

− 4kiw̃iωi


and in particular <(γ) > 0. �

Let us observe that, the diffusion rates do not play any role in the stability of the solutions, while a crucial
quantity is given by the ratio ωi/ki. In particular if i is such that

ωi
ki
<
ωj
kj

∀j 6= i

that the solution W is asymptotically stable also in a slight cooperative environment, that is for β < 0 small.
This is a consequence of the fact that the semi-trivial solutions are constant and the different diffusion rates
do not play a direct role in the stability of the solution (i.e., advantage of low/high diffusion rate). In this
setting, the quantity ωi/ki can be interpreted as the fitness of the i-th population.

One could then wonder whether the previous stability result is a spurious consequence of the fact the
simple solutions are constant or of another specific features of this particular formulation of the system: in
order to confute this doubt, we shall now adapt the proof to a very general framework. Let us consider the
following operator

Sβ(v) :=

{
Liwi −

[
fi(x, u, wi)− β

∑
j 6=i gij(x,wi, wj)

]
wi for all i ∈ {1, . . . , N}

Lu− f(x, u, w1, . . . , wN )u

defined for v = (w1, . . . , wN , u) in the set

X(Ω) =
{
v ∈ C2,α(Ω;RN+1) : ∂Liν wi = ∂Lν v = 0 on ∂Ω

}
where each Li and L stands for a linear (strongly) elliptic operator of the form

Liwi = −div(Ai(x)∇wi), Lu = −div(A(x)∇u)

for some smooth and uniformly elliptic symmetric matrices Ai and A. We assume in the following that all
the terms in the operator Sβ are smooth enough to justify the following computations, and moreover we
suppose that there exists positive constants C such that for any v ∈ X(Ω) of non negative components we
have 

fi(x, u, wi) ≤ C(1 + u− wi)
f(x, u, w1, . . . , wN ) ≤ C(1− u)

gij(x,wi, wj) ≥ 0

Based on the previous notation, a function v ∈ X(Ω) is a solution of the generalized model if

Sβ(v) = 0
7



while a function v ∈ C1(R+;X(Ω)) ∩ C(R+;X(Ω)) is a solution to the parabolic model if{
∂tv + Sβ(v) = 0 t > 0

v(0) = v0 v0 ∈ X(Ω).

Using the previous assumptions, we have

Lemma 2.5. For any non-negative initial datum v0 ∈ X(Ω) there exists a unique solution v of the previous
parabolic problem. Moreover, there exists T > 0 and M > 0, independent of β, such that

0 ≤ w1(t, x), . . . , wN (t, x), u(t, x) ≤M for all t ≥ T , x ∈ Ω.

If there exist i ∈ {1, . . . , N}, t > 0 and x0 ∈ Ω such that wi(t, x0) = 0 (respectively, u(t, x0) = 0), than
wi ≡ 0 (respectively, u ≡ 0).

Proof. The proof follows directly from the maximum principle, and thus it is omitted. For comparison, we
also recall Lemma 2.1. �

In complete analogy, we have a corresponding result for the stationary model. Among the class of all
possible solutions, we are interested in the particular case of solutions that have only one component among
the first N which is non-trivial.

Definition 2.6. For a given i ∈ {1, . . . , N}, a solution v ∈ X(Ω) is said to be i-simple if

wi 6= 0, u 6= 0 while wj ≡ 0 for all j 6= i.

Let us observe that if v ∈ X(Ω) is an i-simple solution for Sβ , then it is i-simple solution for any β.
For a given solution v ∈ X(Ω), let L(v) be the Fréchet derivates of Sβ in X(Ω), that is for any ϕ ∈ X(Ω)

we have

L(v)[ϕ] = lim
ε→0

Sβ(v + εϕ)− Sβ(v)

ε

=



Liϕi −
[
fi(x, u, wi)− β

∑
j 6=i gij(x,wi, wj)

]
ϕi

−fi,u(x, u, wi)wiϕ− fi,wi(x, u, wi)wiϕi
+β
∑
j 6=i gij,wi(x,wi, wj)wiϕi + β

∑
j 6=i gij,wj (x,wi, wj)wiϕj

Lϕ− f(x, u, w1, . . . , wN )ϕ− f,u(x, u, w1, . . . , wN )ϕ

−
∑N
i=1 f,wi(x, u, w1, . . . , wN )ϕi

Analogously, for any fixed i ∈ {1, . . . , N} we defined the i-th partial derivates Li(v) as the Fréchet derivates
of Sβ in X(Ω) with respect to the direction ϕ ∈ X(Ω) such that ϕ = (0, . . . , ϕi, . . . , 0, ϕ), that is

Li(v)[ϕ] =



Liϕi −
[
fi(x, u, wi)− β

∑
j 6=i gij(x,wi, wj)

]
ϕi

−fi,u(x, u, wi)wiϕ− fi,wi(x, u, wi)wiϕi
+β
∑
j 6=i gij,wi(x,wi, wj)wiϕi

0 for j 6= i

Lϕ− f(x, u, w1, . . . , wN )ϕ− f,u(x, u, w1, . . . , wN )ϕ

−f,wi(x, u, w1, . . . , wN )ϕi

Accordingly, we have recall that a solution v ∈ X(Ω) is stable if any non-trivial solution (γ,ϕ) of

L(v)[ϕ] = γϕ

has necessarily <(γ) > 0. For i-simple solutions we have

Definition 2.7. For a given i ∈ {1, . . . , N}, an i-simple solution v ∈ X(Ω) is internally stable if any
non-trivial solution (γ,ϕ) of

Li(v)[ϕ] = γϕ

with ϕ = (0, . . . , ϕi, . . . , 0, ϕ) we have necessarily <(γ) > 0.
8



Clearly, if an i-simple solution is stable it is also internally stable: under suitable conditions, the inverse
is true.

Proposition 2.8. For a given i ∈ {1, . . . , N}, let us assume that

inf
x∈Ω

gji(x, 0, s) > 0 for all s > 0 and j 6= i.

If v ∈ X(Ω) be an i-simple internally stable solution v ∈ X(Ω), then there exists β̄ such that v is a stable
solution for all β > β̄.

Proof. The i-simple solution v = (0, . . . , wi, . . . , 0, u) is stable if

Liϕi −
[
fi(x, u, wi)− β

∑
j 6=i gij(x,wi, 0)

]
ϕi

−fi,u(x, u, wi)wiϕ− fi,wi(x, u, wi)wiϕi
+β
∑
j 6=i gij,wi(x,wi, 0)wiϕi + β

∑
j 6=i gij,wj (x,wi, 0)wiϕj = λϕi

Ljϕj − [fj(x, u, 0)− βgji(x, 0, wi)]ϕj = λϕj

Lϕ− f(x, u, 0, . . . , wi, . . . , 0)ϕ− f,u(x, u, 0, . . . , wi, . . . , 0)ϕ

−
∑N
i=1 f,wi(x, u, 0, . . . , wi, . . . , 0)ϕi = λϕ

has a nontrivial solution ϕ ∈ X(Ω) if and only if <(λ) > 0. Let us consider the equations of index j 6= i,
which are decoupled from the other equations in the system, we have{

Ljϕj = [fj(x, u, 0)− βgjh(x, 0, wi) + λ]ϕj in Ω

∂
Lj
ν ϕj = 0 on ∂Ω

As the operator Lj is self-adjoint1, any non-trivial solution of the system must have λ ∈ R. Since the solution
v is i-simple solution, by the maximum principle we have that

inf
x∈Ω

wi(x) = c > 0.

As a result, thanks to our assumptions, there exists β̄ ≥ 0 such that

β̄ ≥ sup
x∈Ω

fj(x, u, 0)

gji(x, 0, wi)
for all j 6= i.

Choosing β > β̄ and testing the equation in ϕj by ϕj itself, we obtain∫
Ω

Aj(x)∇wj · ∇wj =

∫
Ω

[fj(x, u, 0)− βgji(x, 0, wi) + λ]ϕ2
j < λ

∫
Ω

ϕ2
j

thus either λ > 0 or the component ϕj = 0. On the other hand, assuming that <(λ) ≤ 0, we find a
contradiction with the internal stability of the solution v. �

3. Stationary model: bifurcation analysis

We continue the investigation of the asymptotic properties of the system (1.1), this time by studying the
set of solutions of the corresponding elliptic problem.We consider here the model (1.1) under the assumption
that the domain Ω is occupied by only two indistinguishable groups of predator, that is

−d∆w1 = (−ω + ku− βw2)w1 in Ω

−d∆w2 = (−ω + ku− βw1)w2 in Ω

−D∆u = (λ− µu− k(w1 + w2))u in Ω

∂νwi = ∂νu = 0 on ∂Ω

for which we look for solutions (w1, w2, u) ∈ C2,α(Ω). Let us point out that we let µ1 = µ2 = 0, but
the results that will we shown in the following can be easily generalized to the case of positive saturation

1More precisely, the operator is self-adjoint if seen as an operator acting on H1(Ω) functions, and the conclusion can be
reached using the regularity assumptions on its coefficients.
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coefficients (though the computations are inevitably harder). Since we are looking for stationary solutions,
the system can be simplified by some linear substitutions: indeed, if we let

u 7→ d

D
u, λ 7→ λD, µ 7→ µ

D2

d
, k 7→ kD, ω 7→ ωd, β 7→ βd

we can reformulate the system as

(3.1)


−∆w1 = (−ω + ku− βw2)w1 in Ω

−∆w2 = (−ω + ku− βw1)w2 in Ω

−∆u = (λ− µu− k(w1 + w2))u in Ω

∂νwi = ∂νu = 0 on ∂Ω

We recall the definition of the set

X(Ω) :=
{

(w1, w2, u) ∈ C2,α(Ω) : ∂νw1 = ∂νw2 = ∂νu = 0 on ∂Ω
}
.

We are interested in non negative solutions of the system. Letting all the other parameters of the model
fixed, we shall study the set of the solutions of (3.1) by varying the competition strength β: for this reason,
in the following, we will need estimate that are uniform in β, similarly to what we did for the parabolic
model (1.1). Let us recall that the assumption (H) holds, that is λk > µω.

We start by recalling a result concerning the regularity of the solution of the system (3.1). This result is
nothing but the elliptic counterpart of [BZb], to which we also refer the interested reader.

Proposition 3.1. Let (w1, w2, u) ∈ H1(Ω) be a non negative weak solution to (3.1). Then

• the solutions are classical and, more precisely, we have that (w1, w2, u) ∈ C∞(Ω) ∩ C2,α(Ω) for any
α < 1 and the regularity is bounded only by the regularity of Ω;

• (w1, w2, u) are non negative and bounded uniformly in β, that isw1 ≥ 0, w2 ≥ 0, 0 ≤ u ≤ λ/µ

u+ w1 + w2 ≤
(λ+ ω)2

4µω

and either all the inequalities are strict or the solution is constant;
• there exists a constant C > 0 (independent of β) such that

‖(w1, w2)‖Lip(Ω) + ‖(w1 − w2, u)‖C2,α(Ω) ≤ C

• if (w1,β , w2,β , uβ) is any family of solution to (3.1) that satisfy the assumptions, then up to a sub-

sequence, there exists (w1, w2) ∈ Lip(Ω) and u ∈ C2,α(Ω) for any α < 1 such that w1w2 = 0 in
Ω,

(w1,β , w2,β)→ (w1, w2) in C0,α ∩H1(Ω), uβ → u in C2,α(Ω),

for any α < 1, and moreover (w1, w2, u) are solutions to
−∆(w1 − w2) = −ω(w1 − w2) + k(w1 − w2)u in Ω

−∆u = λu− µu2 − k(w1 + w2)u in Ω

∂ν(w1 − w2) = ∂νu = 0 on ∂Ω.

In particular {x ∈ Ω : w1(x) = w2(x)} is a rectifiable set of codimension 1, made of the union of a
finite number of C1,α smooth sub-manifolds.

Proof. Considering the equation satisfied by u, we have

−∆u = λu− µu2 − k(w1 + w2)u ≤ λu− µu2

and the left hand side is negative if u > λ/µ. Moreover, letting v = w1 + w2 + u and summing the three
equations in the system, we obtain

−∆v = −ω(w1 + w2)− 2βw1w2 + λu− µu2 ≤ −ωv + (λ+ ω)u− µu2 ≤ −ωv +
(λ+ ω)2

4µ

and the left hand side is again negative if v > (λ + ω)2/(4µω). The thesis thus follows by the classical
maximum principle.
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Once the L∞ uniform estimate is settled, we can continue by decoupling the equations. In particular,
considering the equation satisfied by the density u (which depends on β only through the uniformly bounded
(w1, w2)) we have {

−∆u = λu− µu2 − k(w1 + w2)u in Ω

∂νu = 0 on ∂Ω

which implies, by the standard elliptic estimates, that there exists C > 0 independent of β, such that

‖u‖C1,α(Ω) ≤ C for all α ∈ (0, 1).

Passing to the equations satisfied by (w1, w2), we have
−∆w1 = (−ω + ku)w1 − βw1w2 in Ω

−∆w2 = (−ω + ku)w2 − βw1w2 in Ω

∂νw1 = ∂νw2 = 0 on ∂Ω.

Thanks to the results in [CTV05a] (see also [SZ15] for a different proof that can covers also the case of more
than two compenents)2 we deduce that there exists yet another constant C > 0 such that

‖(w1, w2)‖Lip(Ω) ≤ C independently of β.

It then suffices to use these new and stronger uniform estimates in the equation satisfied by u in order to
obtain the full uniform estimate

‖(w1, w2)‖Lip(Ω) + ‖u‖C2,α(Ω) ≤ C independently of β.

The concluding assertions of the proposition follow by the Ascoli-Arzela compactness criterion and the
specific structure of the equation satisfied by w1 − w2. �

While Proposition 3.1 gives a precise description of the solutions of the system (3.1), it contains no
information about the existence of such solutions. In the following, our aim is to complete this gap, showing
that the set of solutions is rich. Before doing so, we need to introduce some notation.

For a given solution (w1, w2, u) ∈ X(Ω) of the system (3.1), the Fréchet derivate in X(Ω) associated to
(3.1) computed at (w1, w2, u) is given by

Lβϕ = −∆ϕ−Aβϕ, for any ϕ ∈ X(Ω)

where Aβ = Aβ(w1, w2, u) ∈ C2,α(Ω,R3×3) is

A = Aβ =

 −ω + ku− βw2 −βw1 kw1

−βw2 −ω + ku− βw1 kw2

−ku −ku λ− 2µu− kw1 − kw2

 .

The solution (w1, w2, u) is said to be (strongly linearly) stable if any non-trivial solution (γ,ϕ) of the
linearized equation

Lβϕ = γϕ

has necessarily <(γ) > 0; it is said (strongly linearly) unstable if on the contrary there exist a non-trivial
solution with <(γ) < 0.

Remark 3.2. Let us observe that if the solution (w1, w2, u) in the previous definition is constant, its stability
can be directly deduced by the spectrum of the matrix Aβ .

We now proceed with the study of the constant solutions of the system (3.1). We start with the simplest
scenario, that is the limit case β = 0. Under this assumption, since the densities of predators do not interact
directly with each other, we can simplify drastically the system and give a complete description of the set of
solutions of the system.

2It should be pointed out that the cited papers deal with uniform estimates for the solutions inside of the domain Ω, that is

to say in any compact subset of Ω, and not at the boundary. But since the boundary conditions are of homogeneous Neumann
type, it suffices to flatten locally the boundary and reflect the solutions across it in order to obtain the desired uniform estimate

in Ω.
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Lemma 3.3. Let β = 0, then the unique non negative solutions (w1, w2, u) to the system (3.1) are the two
unstable constant solutions

(0, 0, 0),

(
0, 0,

λ

µ

)
and the one-parameter family of (weakly) stable ones

s ∈ [0, 1] 7→
(
λk − µω

k2
s,
λk − µω

k2
(1− s), ω

k

)
.

Proof. In this proof, we shall only classify the solutions; the study of the stability will be postponed in
Lemma 3.4, where we shall address more generally the question about stability of constant solutions for
β ≥ 0.

Since for β = 0 the densities of predators do not interact directly with each other, we can simplify the
system introducing the new variable V = w1 + w2, which, together with u is a solution of the classical
Lotka-Volterra system 

−∆V = −ωV + kV u in Ω

−∆u = λu− µu2 − kV u in Ω

∂νV = ∂νu = 0 on ∂Ω.

From the results in [Mim79, Theorem 1] we have that the previous system has only constant solutions, that
is solution to the algebraic system {

(ku− ω)V = 0

(λ− µu− kV )u = 0

If V = 0, we have the solutions u = 0 or u = λ/µ which correspond to the first two solutions in the thesis
(recall that w1 and w2 are non negative, that is, in this case, w1 = w2 = 0). On the other hand, if u = ω/k,
we obtain the solution V = w1 + w2 = (λk − µω)/k2. Substituting this information in (3.1) we obtain that
both w1 and w2 are harmonic functions, hence constants. �

As we shall see later, the value β = 0 corresponds to a bifurcation point of multiplicity one for the system
(3.1) around the solution

(w1, w2, u) =

(
λk − µω

2k2
,
λk − µω

2k2
,
ω

k

)
,

so that the one-parameter family of solutions of Lemma 3.3 is nothing but the branch of solutions generating
from it.

Lemma 3.4. The system (3.1) admits four different types of constant solutions:

(a) the trivial solution (0, 0, 0), which is strongly unstable;
(b) the semi-trivial solutions

w1 = 0, w2 = 0, u =
λ

k
which is strongly unstable;

(c) the semi-trivial solutions

w1 =
λk − µω

k2
, w2 = 0, u =

ω

k
and w1 = 0, w2 =

λk − µω
k2

, u =
ω

k

which are strongly stable;
(d) the family of non trivial solutions

w1 = w2 =
λk − µω
µβ + 2k2

, u =
λβ + 2kω

µβ + 2k2

which are unstable for β > 0. In particular, in this latter case,

σ(Aβ) =

{
β
λk − µω
µβ + 2k2

, γ1,β , γ2,β

}
where γ1,β and γ2,β are two, possibly complex conjugate, eigenvalues with negative real part.
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Proof. The proof is a rather straightforward computation, but we will report it in order to give also inter-
pretation on the results.

The trivial solution (0, 0, 0) corresponds to the matrix

Aβ =

 −ω 0 0
0 −ω 0
0 0 λ


which is already in a diagonal form. The instability is caused by the eigenvalues λ > 0, which corresponds
to the constant eigenfunction (0, 0, 1). As a result, in complete accordance with other biological models, it
implies that a logistic growth law in the prey population is responsible for an exponential growth, uniform
in all the domain Ω, at least when the population is small. Let us observe that none of the spectral and
stability properties of the trivial solution depends on the competition β.

Similar computations hold for the semi-trivial solution (0, 0, λ/µ), whose matrix is

Aβ =


λk−µω
µ 0 0

0 λk−µω
µ 0

−λk/µ −λk/µ −λ

 .

The semi-trivial solutions are, due to the symmetry of the system, completely analogous. Let us focus for
example on the solution w1 = (λk − µω)/k2, w2 = 0 and u = ω/k. In this case the matrix Aβ becomes

Aβ =

 0 −βw1 kw1

0 −βw1 0
−ω −ω −µω/k

 .

A direct computation shows that the spectrum of Aβ is given by

γ = −βw1,−
µω/k ±

√
(µω/k)2 − 4kωw1

2
,

implying strong stability of the semi-trivial solutions. As already observed in the previous section, this result
in unchanged even for the model with different parameters for the two populations of predators, as long as
β > 0.

In the case of non trivial constant solutions, recalling that w1 = w2, the matrix Aβ reduces to

Aβ =

 0 −βw1 kw1

−βw1 0 kw1

−ku −ku −µu

 .

By direct inspection (comparing the first two row of Aβ), we see that βw1 ≥ 0 is an eigenvalue, implying in
particular that the nontrivial solutions are unstable for β > 0. Using this information, we can factorize the
characteristic polynomial of Aβ , yielding to

det(A− γId) = (γ − βw1)
[
γ2 + (βw1 + µu)γ + (2k2uw1 + βµuw1)

]
= 0

that is

γ = βw1,−
(βw1 + µu)±

√
(βw1 + µu)2 − (2k2uw1 + βµuw1)

2
,

and this concludes the proof. �

The set of non-trivial constant solutions undergoes a transformation when β = 0, see Lemma 3.3. More-
over, the spectrum of the matrix A0, computed on the linear set of solutions is

γ = 0,−
µω/k ±

√
(µω/k)2 − 4kω(w1 + w2)

2
.

The trivial eigenvalue underlines the degeneracy of the constant solutions, as they form a linear subspace,
while the other two strictly negative eigenvalues confirm that this set of solutions is stable with respect to
perturbations that move apart from this configuration, i.e. non homogeneous perturbation (see Proposition
2.2).
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Remark 3.5. The stability of the solutions belonging to the classes (a), (b) and (c) does not depend on β.
More precisely, in the classes (a) and (b) the spectrum of Aβ is independent of β, while in the third case (c)
the spectrum is also contained in C− := {z ∈ C : <(z) < 0}.

We can say more about constant solution, and in particular we have that if the component u is constant,
so are the other components.

Lemma 3.6. For a solution (w1, w2, u) of (3.1), if u is constant, so are the other components.

Proof. The case for β is already object of Lemma 3.3, thus we can assume β > 0. Starting from the equation
in u, assuming u a positive constant, we find that necessarily

w1 + w2 =
λ

k
.

Substituting the previous identity in the equation for wi, i = 1, 2, we obtain{
−∆wi =

(
−ω + ku− β λk + βwi

)
wi

∂νwi = 0 on ∂Ω.

Summing up the equation, we obtain moreover

w2
1 + w2

2 =
λ

k

(
λ

k
− ku− ω

β

)
> 0

As a result, we have obtained the identities

w1 + w2 = a, w2
1 + w2

2 = b

for some positive constant a and b: we claim that these imply that both w1 and w2 are constant. Indeed
taking the gradient of both expression we see that

(w1 − w2)∇w1 = (w1 − w2)∇w2 = 0

and the claim follows. Using this information, it is also possible to compute explicitly the solutions, and in
particular we find u = ω/k. �

We are mostly interested in the case of completely non-trivial solutions, which is investigated further in
the following lemma. Let Sβ stand for the set of completely non-trivial constant solutions (w1, w2, u) of the
form

w1 = w2 =
λk − µω
µβ + 2k2

, u =
λβ + 2kω

µβ + 2k2
.

Lemma 3.7. Let (w1, w2, u) ∈ Sβ. The eigenvalues of Aβ behave as

β
λk − µω
µβ + 2k2

∼ λk − µω
µ

, γ1,β ∼ −
(
λ+

λk − µω
µ

)
, γ2,β → 0− as β →∞.

In particular, the supremum of the spectrum of the matrix Aβ is described, in terms of β, by the curve

β 7→ β
λk − µω
µβ + 2k2

.

Moreover, the supremum of the spectrum is monotone increasing in β and its limit as β →∞ can be made
as large as wanted by taking µ small accordingly. In particular, in the limit case µ = 0 the spectrum is
unbounded.

The unstable direction of Aβ is spanned by the eigenvector (1,−1, 0).

We can now show a result concerning the existence of non constant solutions: our construction is implicit
and uses the topological degree argument through a bifurcation analysis of the set of constant solutions. Let
0 = γ0 < γ1 ≤ γ2 ≤ . . . be the sequence of eigenvalues of the Laplace operator with homogeneous Neumann
boundary conditions and let {ψi} be the corresponding eigenfunctions

(3.2)

{
−∆ψi = γiψi in Ω

∂νψi = 0 on ∂Ω.
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Theorem 3.8. Let n̄ ∈ N be the largest index corresponding to an eigenvalue γn̄ < (λk−µω)/µ and assume
that n̄ ≥ 1. Then, for any 1 ≤ n ≤ n̄, if γn is an eigenvalue of odd multiplicity, then there exists a maximal
closed and connected subset Cn ⊂ C2,α(Ω;R3)× R and βn ∈ (0,+∞) such that

(a) βn
λk−µω
µβn+2k2 = γn and

(b) the corresponding constant non trivial solution (w1, w2, u) ∈ Cn
and either

• Cn is unbounded in β, or
• Cn contains another point which satisfies (a) and (b) for a different value of n.

Finally, on each continuum Cn, β is bounded from below away from zero.

Remark 3.9. One could wonder what happens for the eigenvalue γ0 = 0. The answer is actually already
contained in the previous remarks: indeed, γ0 corresponds to the value β = 0, and we have already observed
in Lemma 3.3 that in this situation there exists a one dimensional subspace of constant solutions. Observe
that, by the same argument of Theorem 3.8, this line should be unbounded in β, collapse in an other
bifurcation point, or meet the boundary of the set of solutions (this case is excluded in Theorem 3.8 for the
higher order bifurcation points). Since this branch of solutions is defined only for β = 0 only one between
the last two possibility holds. In particular, this depends on our definition of solutions: indeed, either we
allow solutions to be negative, or we restrict ourselves to the case of non-negative solutions. In this latter
case, the more feasible for applications, the branch of solutions unraveling for β contains as endpoints the
semi-trivial constant solutions.

Remark 3.10. Exploiting the symmetry of the domain Ω and of the eigenfunctions, we can also give a more
detailed description of the branches in Theorem 3.8, in particular we can show that the symmetries of the
eigenfunctions are preserved along a global branch of solutions, see for instance [Hea88].

Proof. The theorem follows from the bifurcation theorem by Rabinowitz, see [Rab71]. For β > 0 and a
corresponding nontrivial constant solution (w1, w2, u) with w1 = w2, we look for a new solution of the form
(w1 +ϕ1, w2 +ϕ2, u+ϕ), for small perturbations ϕ = (ϕ1, ϕ2, ϕ) ∈ X(Ω). Inserting this ansatz in the system
(3.1) we obtain

−∆ϕ = Aβϕ +

 kϕ1ϕ− βϕ1ϕ2

kϕ2ϕ− βϕ1ϕ2

−µϕ2 − k(ϕ1 + ϕ2)ϕ

 = Aβϕ +H(β,ϕ) in Ω

completed by homogeneous Neumann boundary conditions. Here the nonlinear functional H : (R, X) → X
is continuous and ‖H(β,ϕ)‖X ≤ C‖ϕ‖2X for a constant C > 0 that can be chosen uniformly on compact sets
of β. Let us now introduce the operator L ∈ K(X;X) defined as the linear map such that for any u, f ∈ X

u = Lf ⇔

{
−∆u+ u = f in Ω

∂νu = 0 on Ω.

We can rewrite the perturbed system as

(3.3) ϕ = (Aβ + Id)Lϕ + LH(β,ϕ) = (Aβ + Id)Lϕ + h(β,ϕ)

where now h : (R, X) → X is a compact operator such that ‖h(β,ϕ)‖X ≤ C‖ϕ‖2X and again the constant
C > 0 that can be chosen uniformly on compact sets of β. We are now in a position to apply the bifurcation
theorem by Rabinowitz [Rab71]: indeed, as a function of β, (Aβ + Id)L is a homotopy of compact operators,
and a value β̄ is a bifurcation point for the equation (3.3) whenever the set of solutions to the linear equation

ϕ = (Aβ̄ + Id)Lϕ

has odd dimension. This translates to the system{
−∆ϕ = Aβ̄ϕ in Ω

∂νϕ = 0 on Ω.

The spectral properties of the matrix Aβ̄ where already studied in Lemma 3.4: the matrix has a unique

positive eigenvalue β̄(λk − µω)/(µβ̄ + 2k2) that correspond to the eigenvector (−1, 1, 0). As a consequence,
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we have that (γi, ψi) is an eigenvalue-eigenvector couple of (3.2) and β̄(λk−µω)/(µβ̄+ 2k2) = γi if and only
if ϕ = (ψi,−ψi, 0) solves the previous system for the prescribed value of β̄. In particular we obtain that if
γi has odd multiplicity, then β̄ is a bifurcation point in the sense of the thesis.

It remains to show that the continua Cn are either unbounded in β or meet the set Sβ in another
bifurcation point: recalling the bifurcation theorem by Rabinowitz [Rab71, Theorem 1.3], we already know
that each continuum is either unbounded in R×X(Ω) or collapses on the set Sβ . As a result, it is sufficient
for us to show that if the continuum Cn is unbounded, it must be unbounded in β component. First of all,
let us observe that on each of the continuum Cn, the parameter β > 0: indeed if there exists (w1, w2, u) ∈ Cn
with β = 0, this solution must be one of the solutions found in Lemma 3.3. But then, by the stability
analysis of the solutions and the observations in Remark 3.9, we know that the sets of solutions associated
to (0, 0, 0) and (0, 0, λ/µ) (which are defined for all β) are isolated, while the linear space of weakly stable
solutions admits no subsequent bifurcations apart from its midpoint where the set Sβ is generated, and we
obtain a contradiction.

We now recall that, by Proposition 3.1, the non-negative solutions satisfy the system of inequalitiesw1 ≥ 0, w2 ≥ 0, 0 ≤ u ≤ λ/µ

u+ w1 + w2 ≤
(λ+ ω)2

4µω

and either all the inequalities are strict or the solution is constant. It follows that if β is bounded on Cn,
there must exists on Cn a solution which is constant. Discarding the solutions on Sβ , the only possibility,
thanks to Lemma 3.4, are solutions which are either (case (a)) strongly unstable or (case (b) and (c)) strongly
stable, and their stability does not depend on β: that is to say, no bifurcation point can belong to this set
of solution. As before, this leads us to a contradiction. �

We can strengthen the conclusion of Theorem 3.8 by noticing that we are in a position to apply the
analytic bifurcation theory developed by Dancer in [Dan71, Dan73] (see also [BT03, Theorem 9.1.1]). We
have

Theorem 3.11. Under the assumptions of Theorem 3.8, for any continua of solutions Cn there exists a
curve Cn := {(B(s),W(s)) : R 7→ R+ ×X} ⊂ Cn, which contains the bifurcation point that spawns Cn, such
that

• at any point, the curve Cn can be locally reparametrized as an analytic curve;
• the set of possible secondary bifurcation points on Cn has no accumulation points.

Moreover

• either Cn is a closed loop, and meets the set Sβ in two distinct bifurcation points;
• or the set Cn is unbounded in R+ ×X, and more specifically

B(s)→ +∞ as s→∞

while, letting (w1(s), w2(s), u(s)) = W(s), the quantity

‖w1(s)‖Lip(Ω) + ‖w2(s)‖Lip(Ω) + ‖u(s)‖C2,α(Ω)

is bounded uniformly in s for all α < 1.

In the one-dimensional case we can say even more, specifically

Theorem 3.12. Under the assumptions of Theorem 3.8, let us moreover suppose that Ω ⊂ R is an open and
bounded interval. Then any eigenvalue γ of (3.2) is of multiplicity one, and the corresponding continuum of
solutions Cn (and Cn) generating from the set Sβ at the value

βn
λk − µω
µβn + 2k2

= γn

is unbounded and it intersects the set Sβ only once.
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Proof. The proof follows again the main ideas presented in [Rab71]. Under the assumptions, there exist
a < b ∈ R such that Ω = (a, b) ⊂ R: we can explicitly compute the eigenvalues of (3.2), which are given by

γn :=

(
π

b− a
n

)2

for any n ∈ N.

Based on the discussion in Theorem 3.8, any value of γn corresponds to a bifurcation point, even though the
set C0 generating from γ0 = 0 is given by a trivial linear subspace of constant solutions, which has already
being completely characterized in Lemma 3.3.

Let us consider, for a fixed γn with n ≥ 1 as before, the continuum of solutions Cn that generates from
the set Sβ . By the perturbations analysis conducted in Theorem 3.8, we know that the solutions are of the
form

(w1,β , w2,β , uβ) =

(
λk − µω
µβn + 2k2

,
λk − µω
µβn + 2k2

,
λβn + 2kω

µβn + 2k2

)
+ ε(ψn,−ψn, 0) + o(ε)

where ε is a parameter such that ε→ 0 when β → βn, ψn is a normalized eigenfunction of 3.2 in Ω = (a, b)
and o(ε) is a perturbation in C2,α([a, b]) of order less than ε. In particular, letting

vβ,n = w1,β − w2,β = 2εψn + o(ε)

(where we have highlighted the index n of the eigenfunction which spawns vβ,n) we have that vβ,n solves{
−v′′β,n = (−ω + kuβ)vβ,n in (a, b),

v′β,n(a) = v′β,n(b) = 0.

As a result, when ε is small, vβ has exactly n distinct simple zeroes in (a, b), located closely to the zeroes of
the eigenfunction ψn. We recall that the solutions of the system (3.1) are bounded in Lip([a, b]) uniformly
with respect to β and in particular the last component uβ is bounded in C2,α([a, b]) for all α < 1: it follows
that there exists a parametrization of the continuum Cn with respect to which the functions vβ,n vary
smoothly and they also are uniformly bounded in C2,α([a, b]) for all α < 1.

We claim that on each continuum of solutions Cn, the number of zeroes of the function vβ,n does not
change. To prove the claim, we first observe that, since the solutions depend smoothly in C2,α([a, b]) on
the parametrization, if vβ,n changes the number of zeros, there exists a solution v inside of Cn that has a
zeroes of multiplicity at least two, which could be at an interior point or at the boundary (this is thanks to
the homogeneous Neumann condition). But then the uniqueness theorem for ordinary differential equations
with smooth coefficients would imply that the function v must be equal to 0. As a result, the corresponding
solution (w1, w2, u) has equal first and second component: reasoning as in Lemma 3.3, by letting V = w1+w2,
we obtain a solution to 

−∆V = −ωV + kV u− βV 2 in Ω

−∆u = λu− µu2 − kV u in Ω

∂νV = ∂νu = 0 on ∂Ω.

and again thanks to the results in [Mim79], the solution (w1, w2, u) must be a constant solution. We have
two possibilities:

1) The parameter β corresponding to (w1, w2, u) is 0. In this case, combining Lemma 3.3 and Remark
3.9, we already know that from β = 0 a linear space of solutions is generated, and on this continuum there
are no subsequent bifurcations, and thus we are lead to a contradiction;

2) The parameter β > 0: in this case (w1, w2, u) belongs necessarily to the set Sβ (we recall that if β > 0
the only bifurcation points belong to Sβ , see Remark 3.5). From the previous discussion it must be that
the point corresponds to a different eigenvalue γm, m 6= n, and locally the solutions can be written as a
perturbation along the line direction spanned by the eigenfunction ψm. Similarly as before, the difference of
the first two components can be asymptotically expanded as

vβ,m = w1,β − w2,β = 2εψm + o(ε)

and, again, for ε → 0, the solution vβ,m has m distinct simple zeroes on (a, b). In particular, the solution
must have m 6= n zeroes in a neighborhood of the bifurcation point, leading us to a contradiction. �

17



We want to study more closely the bifurcation branches Cn that are unbounded in R × X. We recall
that assumptions (H) holds, in particular λk > µω. Let us consider the set, denote by P, of all solutions
wβ = (w1,β , w2,β , uβ) of (3.1) with competition parameter β > 0 such that all of its components are strictly
positive. We use a blow-up technique first introduced in [DD94] to study a similar situation.

Lemma 3.13. There exists M > 0 such that

1

M
‖w2,β‖L∞(Ω) ≤ ‖w1,β‖L∞(Ω) ≤M‖w2,β‖L∞(Ω)

for all wβ ∈P and β sufficiently large.

Proof. We argue by contradiction, assuming that there exists a sequence of solutions in P that invalidates
the thesis. Without loss of generality, let us assume that ‖w1,n‖L∞(Ω) ≤ ‖w2,n‖L∞(Ω) and that the ratio
‖w1,n‖L∞(Ω)/‖w2,n‖L∞(Ω) → 0 as βn → +∞. Let us introduce the renormalized functions

w̄i,n =
wi,n

‖wi,n‖L∞(Ω)
for i = 1, 2

which are solutions to
−∆w̄1,n = −ωw̄1,n + kw̄1,nu− βn‖w2,n‖L∞(Ω)w̄1,nw̄2,n in Ω

−∆w̄2,n = −ωw̄2,n + kw̄2,nu− βn‖w1,n‖L∞(Ω)w̄1,nw̄2,n in Ω

−∆un = λun − µu2
n − k(w1,n + w2,n)un in Ω

∂νw̄i,n = ∂νu = 0 on ∂Ω

We distinguish between two different cases.
1) βn‖w2,n‖L∞(Ω) ≤ C. In this case, all the terms in the equations are bounded uniformly in βn, and

thus in it easy to see that the sequence w̄i,n, un and also wi,n, are uniformly bounded in W 2,p(Ω) for any
p < ∞. Up to a subsequence, we deduce strong convergence of the renormalized densities to some limit
profile (w̄1,∞, w̄2,∞, u∞) for both w̄1,∞ and w̄2,∞ non trivial, while by assumption wi,n → 0 uniformly in Ω.
Moreover, by assumption we have that

βn‖w2,n‖L∞(Ω) → C ≥ 0 while βn‖w1,n‖L∞(Ω) → 0.

As a result, the limit profiles
−∆w̄1,∞ = −ωw̄1,∞ + kw̄1,∞u− Cw̄1,∞w̄2,∞ in Ω

−∆w̄2,∞ = −ωw̄2,∞ + kw̄2,∞u in Ω

−∆u∞ = λu∞ − µu2
∞ in Ω

∂νw̄i,∞ = ∂νu = 0 on ∂Ω.

By the maximum principle, we have that the equation in u∞ has only the constant solutions u∞ = 0 or λ/µ.
Inserting this information in the equation satisfied by w̄2,∞ we see that{

−∆w̄2,∞ = −ωw̄2,∞ + kw̄2,∞u∞ = C ′w2,∞ in Ω

∂νw̄2,∞ = 0 on ∂Ω.

where the constant C ′ is non zero by the assumption (H). It follows that necessarily w̄2,∞ ≡ 0, in contradiction
with ‖w̄2,∞‖L∞(Ω) = 1.

2) βn‖w2,n‖L∞(Ω) → +∞. Let us test the equation in w̄i,n by w̄i,n itself. Recalling that w̄i,n ≥ 0 and
that un ≤ λ/µ we have ∫

Ω

|∇w̄i,n|2 ≤ k
λ

µ
|Ω|,

where |Ω| is the measure of the set Ω. As a result, w̄i,n are bounded uniformly in H1(Ω) and thus converge
to some weak limit w̄i,∞ ∈ H1(Ω). Moreover, the compact embedding of H1(Ω) in L2(Ω) yields w̄i,n → w̄i,∞
strongly in L2(Ω) and further, since by construction ‖wi,n‖L∞(Ω) = 1, we have that w̄i,n → w̄i,∞ strongly
in Lp(Ω) for any p ≥ 2. Recalling that the equation in un contains only uniformly bounded terms, up to a
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subsequence we have un → u∞ in W 2,p(Ω) for any p < ∞. Let us show that each component of the limit
configuration (w̄1,∞, w̄2,∞, u∞) is non trivial: from the equations satisfied by w̄i,n we have that{

−∆w̄i,n + ωw̄i,n ≤ kw̄i,nun in Ω

∂νw̄i,n = 0 on ∂Ω.

Now, letting gi,n ∈ H1(Ω) be the solution to{
−∆gi,n + ωgi,n = kw̄i,nun in Ω

∂νgi,n = 0 on ∂Ω

we have, from the previous discussion, that the sequence {gi,n}n is compact in W 2,p(Ω) for any p > 1 and,
in particular, in C0,α(Ω) for some α > 0. The maximum principle, on the other hand, yields 0 ≤ w̄i,n ≤ gi,n.
Let us then assume, by contradiction, that either w̄i,∞ = 0 or u∞ = 0: then it follows gi,n → 0 uniformly,
that is, w̄i,n → 0 uniformly, in contradiction with ‖wi,n‖L∞(Ω) = 1.

Testing the equations in w̄1,n by ϕ ∈ H1(Ω), we have

(3.4) βn‖w2,n‖L∞(Ω)

∫
Ω

w̄1,nw̄2,nϕ =

∫
Ω

(kun − ω)w̄1,nϕ−
∫

Ω

∇w1,n · ∇ϕ ≤ C

so that, using our assumption

βn‖w1,n‖L∞(Ω)

∫
Ω

w̄1,nw̄2,nϕ =
‖w1,n‖L∞(Ω)

‖w2,n‖L∞(Ω)
· βn‖w2,n‖L∞(Ω)

∫
Ω

w̄1,nw̄2,nϕ→ 0.

As a result, w̄2,∞ is a weak solution of the equation{
−∆w̄2,∞ = −ωw̄2,∞ + kw̄2,∞u∞ in Ω

∂νw̄2,∞ = 0 on ∂Ω

where 0 ≤ u∞ ≤ λ/µ. By the maximum it follows that either w̄2,∞ ≡ 0 or w̄2,∞ ≥ C > 0. The first case
was already excluded, thus the latter holds. But then equation (3.4), with ϕ = 1, yields

βn‖w2,n‖L∞(Ω) ·
∫

Ω

w̄1,nw̄2,n ≤ C =⇒
∫

Ω

w̄1,∞w̄2,∞ = 0

which implies w̄1,∞ = 0, in contradiction with the previous discussion. �

Lemma 3.14. The set P is a pre-compact subset of C0,α×C0,α×C2,α(Ω) for any α ∈ (0, 1). Moreover any
converging subsequence (w1,n, w2,n, un)→ (w1,∞, w2,∞, u∞) with βn → +∞ is such that

• either (w1,∞, w2,∞, u∞) has all non trivial components and, letting V = w1,∞ − w2,∞, V changes

sign and (V, u∞) ∈ C2,α(Ω) is a non-trivial solution of
−∆V = −ωV + kV u in Ω

−∆u = λu− µu2 − k|V |u in Ω

∂νV = ∂νu = 0 on ∂Ω.

• or

(βnw1,n, βnw2,n, un) ∼
(
λk − µω

µ
,
λk − µω

µ
,
λ

µ

)
as n→ +∞in Lp(Ω) for any p <∞ and weakly in H1(Ω).

Proof. The compactness in strong topology of the sequence of solutions was already established in Proposition
3.1, we are left with the study of the asymptotic profiles. First of all we exclude that case un → 0 (which
would hold uniformly in Ω as by the compactness properties): in this situation, indeed, we would have{

−∆wi,n = −ωwi,n + kwi,nun − βnwi,nwj,n ≤ −ω2wi,n in Ω

∂νwi,n = 0 on ∂Ω

for n sufficiently large, which implies that necessarily wi,n ≡ 0 for n large, against the assumptions.
Let us now assume that

w1,n, w2,n → 0 uniformly in Ω.
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Passing to the limit in n the equation in un, we see that u∞ satisfies{
−∆u∞ = λu∞ − µu2

∞ in Ω

∂νu∞ = 0 on ∂Ω

which implies that un → λ/µ in C2,α(Ω) (recall that we have already excluded the case un → 0). We
introduce the renormalized functions

w̄i,n :=
wi,n

‖w1,n‖L∞(Ω)

which are solutions to
−∆w̄1,n = −ωw̄1,n + kw̄1,nun − βn‖w1,n‖L∞(Ω)w̄1,nw̄2,n in Ω

−∆w̄2,n = −ωw̄2,n + kw̄2,nun − βn‖w1,n‖L∞(Ω)w̄1,nw̄2,n in Ω

∂νw̄i,n = 0 on ∂Ω.

Let us observe that, thanks to Lemma 3.13, we have that w̄i,n are bounded by some positive constant M > 0;
moreover, using the same initial steps of Case 2) in Lemma 3.13, we see that w̄i,n → w̄i,∞ in Lp(Ω) for any
p <∞ and weakly in H1(Ω) and also w̄i,∞ 6= 0. Letting Vn = w̄1,n− w̄2,n, we have that ‖Vn‖L∞(Ω) ≤M + 1
and {

−∆Vn = (−ω + kun)Vn in Ω

∂νVn = 0 on ∂Ω.

As a result of the strong convergence un → λ/µ, we have that Vn → V∞ in C2,α(Ω), solution of the limit
equation {

−∆V∞ = λk−µω
µ V∞ in Ω

∂νV∞ = 0 on ∂Ω

where, by assumption (H), (λk − µω)/µ > 0. Consequently either V∞ ≡ 0 or (if (λk − µω)/µ is a positive
eigenvalue of the Laplacian with Neumann boundary conditions) V∞ changes necessarily sing, and thus
w̄1,∞ 6= 0 and w̄2,∞ 6= 0. Testing the equation in w̄i,n by w̄i,n itself, we find∫

Ω

|∇w̄i,n|+ βn‖w1,n‖L∞(Ω)

∫
Ω

w̄2
i,nw̄j,n =

∫
Ω

(−ω + kun) w̄2
i,n ≤ C

which implies, in particular, that βn‖w1,n‖L∞(Ω) → C for some constant C ≥ 0. Finally, passing to weak
limit the equation in w̄i,n we find{

−∆w̄∞ =
(
−ω + k λµ

)
w̄∞ − Cw̄2

∞ in Ω

∂νw̄∞ = 0 on ∂Ω.

If C = 0, since (λk − µω)/µ > 0 and w̄∞ is by the maximum principle non negative, it must be w̄∞ ≡ 0, in
contradiction with the renormalization. As a result C > 0 and, from a direct application of the maximum
principle (see also Lemma 3.15 below), we have that the only non negative solution to the previous equation
are the constant. In particular, it must be w̄∞ ≡ 1, thus(

−ω + k
λ

µ

)
− C = 0 =⇒ C =

λk − µω
µ

. �

Lemma 3.15. Let Ω ⊂ Rn a smooth domain, a and b positive constants. If u ∈ H1(Ω) is a non negative
solution to {

−∆u = (a− bu)u in Ω

∂νu = 0 on ∂Ω

then u ≡ 0 or u ≡ a/b.

Proof. Letting w = u− a/b, we have {
−∆w = −buw in Ω

∂νw = 0 on ∂Ω.
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Testing the equation by w itself and recalling the assumption u ≥ 0 and b > 0 we have∫
Ω

|∇w|2 + b

∫
Ω

uw2 = 0

and we easily conclude that w has to be constant (hence u) and either u = 0 or u = a/b. �

As usual, in the one-dimensional case we can say more, and in particular we can show the following
stronger version of Lemma 3.14.

Lemma 3.16. Let Ω = (a, b) with a < b ∈ R. The set P is a pre-compact subset of C0,α×C0,α×C2,α(Ω) for
any α ∈ (0, 1). Moreover any converging subsequence (w1,n, w2,n, un)→ (w1,∞, w2,∞, u∞) with βn → +∞ is
such that

• either (w1,∞, w2,∞, u∞) has all non trivial components and, letting V = w1,∞ − w2,∞, V changes

sign and (V, u∞) ∈ C2,α(Ω) is a non-trivial solution of
−V ′′ = −ωV + kV u in Ω

−u′′ = λu− µu2 − k|V |u in Ω

V ′(a) = V ′(b) = u′(a) = u′(b) = 0

• or

(w1,n, w2,n, un) =

(
λk − µω
βnµ

,
λk − µω
βnµ

,
λ

µ

)
as n→ +∞.

Proof. As in Theorem 3.12, we can use the auxiliary function vβ = w1,β −w2,β to study more accurately the
second case of the lemma. The conclusion is reached once again by counting the number of zeros of vβ and
observing that this must be constant on each bifurcation branch. �

As a direct consequence, we have that there exists δ > 0 such that, for β̄ sufficiently large,

dist (P \Sβ ,Sβ) > δ for all β ≥ β̄

where the distance is taken in the sense of the C0,α ×C0,α ×C2,α(Ω) norm for any α ∈ (0, 1). Moreover each
branch of solutions constructed in Theorem 3.12 converge (up to a subsequence) to a disjoint set of solutions
for the limit problem, characterized by the different number of zeroes for the function V .

4. Optimal repartition of resources

We continue the investigation of the model by addressing an interesting application: can the model be
used to predict the optimal repartition of the domain Ω in hunting territories, that is, the optimal number
of packs?

To answer this question, we first focus on the limit stationary system satisfied by the densities in the case
of segregation. We shall prove two complementary results in this scenario:

• firstly, we show that each bounded domain Ω b RN can sustain a maximum number of densities of
predators (see Lemma 4.2 and Theorem 4.5). This immediately implies that there exists a number
k ≥ 1 of packs that, for a given configuration of parameters, maximizes the total population of
predators;

• secondly, we show that, under particular choices of the parameters, the total population of predators
in the case of two packs is strictly higher than the of only one pack, implying that in these cases the
optimal configuration is given by a finite but strictly greater than two number of packs.

We start by proving a bound on the total number of packs that can be sustain by a domain Ω. Let us
recall, in this regard, Proposition 3.1 (which can be generalized to the case of N densities of predators).
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Proposition 4.1. Let Ω ⊂ RN be a smooth domain, and let β, D, di, ωi, ki, aij = aji for 1 ≤ i, j ≤ k be
positive parameters, we consider the solutions w = (w1, . . . , wN , u) ∈ C2,α(Ω) of the system

(4.1)


−di∆wi =

(
−ωi + kiu− µiwi − β

∑
j 6=i aijwj

)
wi

−D∆u =
(
λ− µu−

∑N
i=1 kiwi

)
u

∂νwi = ∂νu = 0 on ∂Ω.

Then w are uniformly bounded in L∞(Ω) with respect to β > 0 and moreover there exists C (independent of
β) such that

‖(w1, . . . , wN )‖Lip(Ω) + ‖u‖C2,α(Ω) ≤ C

If {wβ}β is a family of solution as above, defined for β → +∞, then, up to subsequences, there exists

w = (w1, . . . , wN , u) with (w1, . . . , wN ) ∈ Lip(Ω̄) and u ∈ C2,α(Ω) and

(w1,β , . . . , wN,β)→ (w1, . . . , wN ) in C0,α ∩H1(Ω), uβ → u in C2,α(Ω).

Any limit satisfies the system of inequalities (in the sense of measures)

(4.2)



−di∆wi ≤ (−ωi + kiu)wi

−∆

diwi −∑
j 6=i

djwj

 ≥ (−ωi + kiu)wi −
∑
j 6=i

(−ωj + kju)wj in Ω

−D∆u =

(
λ− µu−

k∑
i=1

kiwi

)
u

∂νwi = ∂νu = 0 on ∂Ω.

Finally, the subset {x ∈ Ω :
∑N
i=1 wi = 0} is a rectifiable set of codimension 1, made of the union of a finite

number of C1,α smooth sub-manifolds.

The proofs of this result follows the same general ideas of Proposition 3.1, and it is then omitted. We
point out that the conclusion on the regularity of the limit free-boundary problem follows directly from the
main results in [CTV05b], [CKL09] and [TT12]. In order to simplify the exposition, we shall assume aij = 1
for all 1 ≤ i, j ≤ k: the results that follow can be generalized without any real effort. A much harder case is
when the competition matrix is not symmetric, that is when aij 6= aji for some i 6= j: even though most of
the results are valid also in this case, we will not consider it here, since we can only obtain a less complete
description of the solutions, but we refer the reader to [STVZ] to understand the new difficulties. Before
we continue, we need some uniform assumptions on the coefficients in (4.2): in particular all the coefficients
D, d1, . . . , dN , ω1, . . . , ωN , k1, . . . , kN are positive and uniformly bounded from zero and infinity, that is, there
exists δ > 0 such that

δ < D, d1, . . . , dN , ω1, . . . , ωN , k1, . . . , kN <
1

δ
.

Evidently the previous assumptions are trivially verified for a fixed number N of densities, but are needed
when studying the model for an a priori unspecified number of densities.

We start with the following result, which states that for each environment Ω there is a maximal number
of densities of predators N̄ that can be sustained.

Lemma 4.2. For a given smooth domain Ω ⊂ RN , there exists N̄ ∈ N such that any non negative solution
(w1, . . . , wN , u) ∈ H1(Ω) of (4.2) has at most N̄ + 1 non trivial components.

In order to prove the previous result, we need to recall the notion of optimal partition (see for instance
[HHOT09] for a general survey and some fundamental results). Caveat: for consistency with the theory of
optimal partitions, in the next two results eigenvalues will be counted starting from the index 1. For any
1 ≤ N ∈ N we say that a family D = {D1, . . . , DN} of subsets of Ω is a N -partition of Ω if

Di ∩Dj = ∅ ∀i 6= j and ∪Ni=1 DN = Ω.
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For each Di, we define the generalized first eigenvalue as

γ1(Di) := inf

{∫
Ω

|∇u|2
/∫

Ω

u2 : u ∈ H1(Ω), u = 0 in Ω \Di

}
and for the partition D we assign the total value

Λ(D) = max
i
γ1(Di).

A partitionD is optimal if it minimize the value of Λ(D) among allN -partitions. We recall the following result
(see [HHOT09, Corollary 5.6]), which follows from the Courant-Fischer characterization of the eigenvalues
of compact hermitian operators.

Theorem 4.3. Let γN (Ω) be the N -th eigenvalue (counted with multiplicity) of{
−∆u = γu in Ω

∂νu = 0 on ∂Ω.

Then

Λ(D) ≥ γN (Ω)

for all N -partitions D of Ω.

Proof of Lemma 4.2. If the component u is zero, all the components of the solution are zero. Indeed, testing
the inequalities in (4.2) by wi ∈ Lip(Ω) we obtain∫

Ω

di|∇wi|2 + (ωi − kiu)w2
i = 0

which yields the claim taking into account that u ≡ 0. As a result, we can assume u ≥ 0 and u 6= 0, that is,
by the maximum principle, u > 0 in Ω. Let us now turn to the equation in u: since wi ≥ 0 for i = 1, . . . , k,
we have

−D∆u =

(
λ− µu−

N∑
i=1

kiwi

)
u ≤ (λ− µu)u =⇒ u ≤ λ

µ
.

On the other hand, we have

−di∆wi = (−ωi + kiu)wi ≤
(
−ωi + ki

λ

µ

)
wi

that is, letting Ωi := {wi > 0}, wi is a sub-solution to
−di∆wi ≤

(
−ωi + ki

λ
µ

)
wi in Ωi

wi = 0 on ∂Ωi ∩ Ω

∂νwi = 0 on ∂Ωi ∩ ∂Ω

Considering the first eigenvalue of Ωi, that is the minimal solution γ1(Ω) of
−∆ϕi = γ1(Ωi)ϕi in Ωi

ϕi = 0 on ∂Ωi ∩ Ω

∂νϕi = 0 on ∂Ωi ∩ ∂Ω

with ϕi 6= 0, by standard arguments, we have that γ1(Ωi) ≥ 0 and ϕi > 0 in Ωi; by the comparison principle,
it follows that

λki − µωi
diµ

< γ1(Ωi) =⇒ wi ≡ 0.

In particular we have that if all the components w1, . . . , wN 6= 0 then necessarily

max
i=1,...,k

γ1(Ωi) < max
i=1,...,k

λki − µωi
diµ

= γ̄.

Since Ω1, . . . ,ΩN is a N -partition of the set Ω, we evince by Theorem 4.3 that necessarily

γN (Ω) < γ̄.
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As a result, we reach the desired conclusion recalling that the sequence of eigenvalues γ1 < γ2 ≤ γ3 ≤ . . . is
unbounded. �

Remark 4.4. Using Weyl’s asymptotic law for the Neumann Laplacian, we can obtain a more explicit
bound on the constant N̄ . Indeed, for a fixed domain Ω ⊂ R2 (similar estimates hold in any dimension),
if we let N(γ) stand for the number of eigenvalues for the Laplace operator with homogeneous Neumann
boundary conditions in Ω which are less than γ, it can be shown that

N(γ) =
|Ω|
4π

γ +
|∂Ω|
4π

√
γ + o(

√
γ).

As a result, for a fixed domain Ω we can obtain the following explicit estimate

N̄ .
|Ω|
4π

max
i=1,...,k

λki − µωi
diµ

for large values of max
i=1,...,k

λki − µωi
diµ

.

This estimate confirms the intuition that by doubling the size of the domain Ω, we can in principle allow for
twice the number of groups of predators.

We can now extend the result in Lemma 4.2 to the original competitive system. For any N ∈ N and
β > 0, let us consider the set PN,β of all solutions (w1,β , . . . , wN,β , uβ) of (3.1) with competition parameter
β such that all of its components are strictly positive. We recall that, by Proposition 4.1, the set of solutions
of (3.1) is pre-compact in H1(Ω) ∩ C0,α(Ω̄).

Theorem 4.5. For a given smooth domain Ω ⊂ RN , there exist N̄ ∈ N and β̄ > 0 such if k > N̄ and β > β̄
then PN,β contains only solutions of the form

‖uβ − λ/µ‖C2,α(Ω) + ‖(w1,β , . . . , wN,β)‖C0,α(Ω) = oβ(1)

for every α ∈ (0, 1).

Proof. The statement will follow from some approximation results in combination with Lemma 4.2. First
of all, we want to show that for k > N̄ and β sufficiently large, then the solutions have to converge to the
trivial solutions (0, . . . , 0, 0) or (0, . . . , 0, λ/µ). We have

Claim. Let (w1,β , . . . , wN,β , uβ) ∈ H1(Ω) be a family of solutions to (4.1) and let us assume that there exists
a solution (w1, . . . , wN , u) ∈ H1(Ω) to (4.2) with h + 1 non trivial components (with 1 ≤ h ≤ k) such that
(w1,β , . . . , wN,β , uβ) → (w1, . . . , wN , u) in H1(Ω) ∩ C0,α(Ω̄). Then there exists β̄ > 0 sufficiently large such
that (w1,β , . . . , wN,β , uβ) has exactly h+ 1 non-trivial components for β ≥ β̄.

Let us first show how to use the claim in order to prove the first part of the theorem. Let us assume
that we are given a family of solutions (w1,β , . . . , wN,β , uβ) ∈ H1(Ω) to the system (4.1), with β → +∞.
By Lemma 4.2 we already know that any solution of (4.2) has at most N̄ + 1 non trivial components:
let us assume that (w1,β , . . . , wN,β , uβ) contains a sub-family (which we shall not relabel) with β → +∞
that has more than N̄ + 1 non trivial components. Proposition 4.1 implies that, up to a subsequence,
(w1,β , . . . , wN,β , uβ) → (w1, . . . , wN , u) in H1(Ω) ∩ C0,α(Ω̄), where (w1, . . . , wN , u) solves the limit system
(4.2), and thus has at most N̄ + 1 components, in contradiction with our claim.

We now show the claim, arguing by contradiction and adopting the scheme of Lemma 3.13. Let wn :=
(w1,βn , . . . , wN,βn , uβn) be any sequence satisfying the assumptions of the claim and let w = (w1, . . . , wN , u)
be its limit for βn → +∞: by the maximum principle, if w has h+1 non trivial components, then necessarily
u is strictly positive. Up to a relabelling, we can assume that the first h components (w1, . . . , wh) are also
non trivial, while (wh+1, . . . , wN ) are equal to zero. As a result, the sub-vector (w1, . . . , wh, u) satisfies the
conclusions of Proposition 4.1, and, in particular, the set

N :=

{
x ∈ Ω :

h∑
i=1

wi(x) = 0

}
is a rectifiable set of codimension 1, made of the union of a finite number of C1,α smooth sub-manifolds
(points if Ω ⊂ R, curves if Ω ⊂ R2, and in general embedded surfaces if Ω ⊂ RN ). For any n ∈ N, we
introduce the renormalized solution

w̄n :=

(
w1,βn

‖w1,βn‖L∞(Ω)
, . . . ,

wN,βn
‖wN,βn‖L∞(Ω)

, uβn

)
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which is well defined since, by assumption, for any n and 1 ≤ i ≤ k, wi,n > 0. Let us observe that, since the
first h components of wn do not vanish as β → +∞, the corresponding first h components of w̄n are just
a comparable scaling of their respective counterparts: in particular they converge in H1(Ω) ∩ C0,α(Ω̄) to a
renormalized limit which is zero on the set N and strictly positive otherwise.

Including the scaling in the system, it follows that w̄n is a solution to

(4.3)


−di∆w̄i,βn =

(
−ωi + kiuβn − β

∑
j 6=i aij‖wj,βn‖L∞(Ω)wj,βn

)
w̄i,βn

−D∆uβn =
(
λ− µuβn −

∑N
i=1 kiwi,βn

)
uβn

∂νw̄i,βn = ∂νuβn = 0 on ∂Ω

We are mostly interested in the equations satisfied by the densities w̄i,βn for h+ 1 ≤ i ≤ k. The maximum
principle implies that un ≤ λ/µ: testing the i-th equation by the density w̄i,βn itself and using its positivity,
we find ∫

Ω

|∇w̄i,βn |2 ≤
ki
di

λ

µ
|Ω|

that is, since by definition ‖w̄1,βn‖L∞(Ω) = 1, w̄i,βn is uniformly bounded in H1(Ω) and it admits a weak limit

w̄i ∈ H1(Ω): the compact embedding in L2(Ω) and the boundedness in L∞(Ω) imply also that w̄i,βn → w̄i
strongly in Lp(Ω) for any p < ∞. Let us show that w̄i is not trivial: for each h + 1 ≤ i ≤ k (the other
components are non trivial by assumption) we have that{

−di∆w̄i,βn ≤ (−ωi + kiuβn) w̄i,βn
∂νw̄i,βn = 0 on ∂Ω.

Let gi,n ∈ H1(Ω) be a solution to{
−di∆ḡi,n + ωigi,n = kiuβnw̄i,βn
∂ν ḡi,βn = 0 on ∂Ω.

By standard arguments we have that 0 ≤ w̄i,βn ≤ gi,n and that

‖gi,n‖C0,α(Ω) ≤ C‖gi,n‖W 2,p(Ω) ≤ C
ki
di

λ

µ
‖w̄i,βn‖Lp(Ω)

for any p < ∞ and suitable C and α > 0. As a result, using the order relationship between wi,βn and gi,n,
we have

1 = ‖w̄i,βn‖L∞(Ω) ≤ C
ki
di

λ

µ
‖w̄i,βn‖Lp(Ω)

which implies in particular, taking the strong limit in Lp(Ω), that w̄n → w̄ has all of its components which
are non trivial. We are now in a position to reach the desired contradiction. Let us consider the equation
satisfied by w̄i,β for h+ 1 ≤ i ≤ k: scaling back the first h densities, we have{

−di∆w̄i,βn ≤
(
−ωi + kiuβn − βn

∑
1≤j≤h wj,βn

)
w̄i,βn

∂νw̄i,βn = 0 on ∂Ω.

From the previous discussion, w̄i,βn → w̄i in L2(Ω) and the limit is non trivial. We let

ci :=

∫
Ω

w̄2
i > 0.

For any ε > 0 and n ∈ N, we consider the sets

Ωε,n :=

{
x ∈ Ω : dist(x, ∂Ω) ≥ ε and inf

m≥n

(
h∑
i=1

wi,βm(x)

)
≥ ε

}
By the uniform convergence of wβn and the properties of its limit configuration we have that for each Ωε,n
is closed and Ωε1,n1 ⊆ Ωε2,n2 whenever ε1 > ε2 and n1 < n2 and, finally,⋃

ε>0,n∈N
Ωε,n = Ω \ N
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Since, as we have already recalled, LN (N ) = 0, it follows that for any δ > 0, there exist ε̄ > 0 and n̄ ∈ N
such that LN (Ω4Ωε,n) ≤ δ for 0 < ε < ε̄ and n ≥ n̄. By the absolute continuity of the Lebesgue integral
and the uniform integrability of converging sequences, there exists δ̄ > 0 (and consequently ε̄ and n̄) such
that ∫

Ωε̄,n̄

w̄2
i,βm ≥

ci
2
> 0 for m ∈ N sufficiently large.

On the other hand, testing the equation in w̄i,βm by w̄i,βm itself, we obtain∫
Ω

di|∇w̄i,βm |2 + ωiw̄
2
i,βm + βm

 ∑
1≤j≤h

wj,βn

w2
i,βm

 ≤ ki ∫
Ω

uβmw
2
i,βm ≤ ki

λ

µ
|Ω|.

Since the terms of the left hand side are positive, we can localize the integral on the sets Ωε̄,n̄ and find

βm inf
Ωε̄,n̄

 ∑
1≤j≤h

wj,βn

∫
Ωε̄,n̄

w2
i,βm ≤ ki

λ

µ
|Ω|

that is

0 <
ci
2
<

∫
Ωε̄,n̄

w̄2
i,βm ≤

1

βmε̄
· ki

λ

µ
|Ω|

a contradiction when βm is sufficiently large, and this proves the first claim.
As of now, we have established that positive solutions must converge to one of the trivial solutions

(0, . . . , 0, 0) or (0, . . . , 0, λ/µ): to conclude the proof, we show that the can only converge to the latter. For
this, we can adopt the same reasoning of Lemma 3.14: suppose that wn → (0, . . . , 0, 0) in H1(Ω) ∩ C0,α(Ω̄)
we have that for n large enough{

−di∆wi,βn =
(
−ωi + kiuβn − βn

∑
j 6=i wj,βn

)
wi,βn ≤ −ωi2 wi,βn

∂νwi,βn = 0 on ∂Ω

which implies that each wi,βn must be identically zero, against our positivity assumption. �

Combing the previous results, we can show

Theorem 4.6. Let δ > 0 and let us consider, for any N ≥ 1, the family of coefficients

δ < D, d1, . . . , dN , ω1, . . . , ωN , k1, . . . , kN <
1

δ
.

For β ≥ 0, let S be the set of solutions (w1, . . . , wN , u) ∈ C2,α(Ω) to (4.1) with any number N + 1 ≥ 2 of
components, with coefficients as above. For any (w1, . . . , wN , u) ∈ S we associated

P (w1, . . . , wN , u) =

∫
Ω

N∑
i=1

wi.

Then N̄ ∈ N for which we have two alternatives

• either there exists (w̄1, . . . , w̄N̄ , ū) ∈ S such that

P (w̄1, . . . , w̄N̄ , ū) = max
N≥1,(w1,...,wN ,u)∈S

P (w1, . . . , wN , u);

• there exist a sequence (w̄1,n, . . . , w̄N̄,n, ūn) ∈ S and functions (w1, . . . , wN ) ∈ Lip(Ω̄) and u ∈
C2,α(Ω) such that

– (w̄1,n, . . . , w̄N̄,n, ūn) are solutions of (4.1) for βn → +∞;

– (w1,β , . . . , wN,β)→ (w1, . . . , wN ) in C0,α ∩H1(Ω), uβ → u in C2,α(Ω);
– (w1, . . . , wN , u) solves (4.2) and

P (w̄1, . . . , w̄N̄ , ū) = sup
N≥1,(w1,...,wN ,u)∈S

P (w1, . . . , wN , u).

We stress the fact that we have posed no conditions on β > 0 and µ > 0. The proof of this theorem in
contained in the previous results.

26



4.1. A case in which the optimal repartition has more than one pack. Under some assumptions,
we now show that the configuration that maximizes the total population of predators (that is, the solution
in Theorem 4.6) contains more than one non trivial components of wi. To show this result, we shall first
consider a simplified version the system (3.1), that is

(4.4)


−∆w1 = (−ω + ku− βw2)w1

−∆w2 = (−ω + ku− βw1)w2

−∆u = (λ− kw1 − kw2)u

∂νwi = ∂νu = 0 on ∂Ω.

We observe that we are considering here a system with indistinguishable densities of predators (all the
characterizing parameters in the equations are independent of the densities) and, more importantly, that the
parameter µ = 0: an extension of the result for µ > 0 will be presented later. We recall (see Proposition 2.4
and Definition 2.6) that (4.4) has as simple solutions (that is, non trivial solutions with only one non trivial
component of (w1, . . . , wN )) only the constant solution

(W,U) =

(
λ

k
,
ω

k

)
=⇒

∫
Ω

W =
λ

k
|Ω|,

∫
Ω

U =
ω

k
|Ω|

Under this assumptions, we have

Lemma 4.7. Let (w1, w2, u) be any solution of (4.4) with β > 0 with all non trivial components. Then∫
Ω

2∑
i

wi =
λ

k
|Ω|+ 1

k

∫
|∇ log u|2 > λ

k
|Ω|

and ∫
Ω

u =
ω

k
|Ω|+ β

λ

∫
w1w2 +

ω

kλ

∫
|∇ log u|2 > ω

k
|Ω|.

Remark 4.8. Equivalently, we could have compared the solutions of (4.4) with β > 0 with any non trivial
solution in the case β = 0 (see Lemma 3.3).

Proof. We recall that, thanks to Lemma 3.6, if u is constant, so are all the other components, and thus in
this case the solution has to be simple. As a result, we can assume that u is not constant: the existence of
such solutions is already known thanks to Theorem 3.8 and 3.11. Let us consider the equation in u. By the
maximum principle, u > 0 and thus we can divide the two members by u and integrate over Ω, obtaining

(4.5)

∫
Ω

2∑
i

wi =
1

k

∫ (
λ+

∆u

u

)
=
λ

k
|Ω|+ 1

k

∫
|∇ log u|2 > λ

k
|Ω|

where the strict inequality follows by the fact that u is not a constant. Similarly, integrating directly the
equations of the system, summing them and using the previous identity, we obtain∫

Ω

u =
ω

k
|Ω|+ β

λ

∫
w1w2 +

ω

kλ

∫
|∇ log u|2 > ω

k
|Ω|

and this concludes the proof. �

As a result, according to the model (4.4), competition (β > 0) is always advantageous both for the
predators and for the preys, in the sense that the total population of predators (and preys) is greater in the
case of two groups computing for the same territory, than in the case of only one group. We now wish to
extend this result in the more realistic case of model (3.1), that is

(4.6)


−∆w1 = (−ω + ku− βw2)w1

−∆w2 = (−ω + ku− βw1)w2

−∆u = (λ− µu− kw1 − kw2)u

∂νwi = ∂νu = 0 on ∂Ω
27



when µ > 0. To do this, let us first observe that the same computations as those in the previous result yield
the identity ∫

Ω

2∑
i

wi =
λ

k
|Ω| − µ

k

∫
u+

1

k

∫
|∇ log u|2

=
λk − µω

k2
|Ω|+ µ

k

(
ω

k
|Ω| −

∫
u

)
+

1

k

∫
|∇ log u|2

which, by uniform convergence of the densities as β → +∞, is valid also in the limit case of segregation.
Unlike the case µ = 0, a direct comparison of previous formula with the case of only one population of
predators is non immediate, since in general we can show that the second term in the last expression is
negative ∫

u >
ω

k
|Ω|.

As a result, we need to carefully estimate the various contributions on the identity, in order to show that, when
µ is sufficiently small, the total population of predators increases in the case of two non trivial components
w1 and w2.

We want to stress that this is not a trivial task. Indeed, an a priori estimate on the solutions which is
independent of µ may not be true, for several reasons:

• from the equation in u, we can only say a priori that u ≤ λ/µ. If µ → 0, we have no reason to
conclude that the solutions of (4.6) converge to solutions of (4.4);

• one may wonder whether the previous bound is not sharp and that is may be attained only by
“spurious” solutions such as (0, 0, λ/µ). But this assertion is not in general true, and to see this we
can recall that, by Theorem 3.8, non constant (thus “genuine”) solutions bifurcate from(

λk − µω
µβ + 2k2

,
λk − µω
µβ + 2k2

,
λβ + 2kω

µβ + 2k2

)
for β

λk − µω
µβ + 2k2

= γn

where γn is the n-th eigenvalue of the Laplace operator with Neumann boundary conditions. For µ
sufficiently small and γn large (and, consequently, β large), we have non constant solutions for which
u is close (at least) in the uniform topology to the upper bound λ/µ.

We thus focus on the one-dimensional case, for which (see Theorem 3.12) we have already established
the existence of segregated solutions and pointed out their symmetries (Remark 3.10). As a result, for
Ω = (−a, a), a > 0 and µ > 0 sufficiently small, we have a continuum of solutions such that w1−w2 vanishes
only for x = 0. Sending the competition parameter to infinity β → +∞, by Lemma 3.16 we can start by
considering the system

(4.7)


−w′′ = (−ω + ku)w

−u′′ = (λ− µu− kw)u in (0, a)

w(0) = w′(a) = u′(0) = u′(a) = 0

for µ > 0, for which the identity (4.5) reduces to∫ a

0

w =
λ

k
a− µ

k

∫ a

0

u+
1

k

∫ a

0

|(log u)′|2

Proposition 4.9. Let (w, u) be any classical solution of (4.7) with both components non negative and
nontrivial. For µ > 0 sufficiently small ∫ a

0

w >
λ

k
a.

Let us observe that, since the solutions of (4.6) converge for β → +∞ to segregated solutions, the previous
result implies an improvement of Theorem 4.6, and in particular we have

Theorem 4.10. Under the assumptions of Theorem 4.6, let us assume moreover that the coefficients in
(4.1) do not depend on the index i and that Ω b R. If µ > 0 sufficiently small the solution of (4.1) that
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maximizes

P (w1, w2, . . . , wN , u) =

∫
Ω

N∑
i=1

wi

has at least N ≥ 2 non trivial components and β > 0.

We divide the proof of 4.9 in two separate results. Letting all the parameters in (4.7) fixed a part from
µ > 0, we have

Lemma 4.11. Let (w, u) be any classical solution of (4.7) with both components non negative and nontrivial.
For any ε > 0 there exists µ̄ > 0 such that

µ

∫ a

0

u ≤ ε if µ ∈ (0, µ̄).

Proof. Let (wn, un) be a sequence of positive solutions to (4.7) for µ = µn, and let us assume, by contradic-
tion, that

µn

∫ a

0

un > C > 0.

First of all, the maximum principle, as already observed, implies that un ≤ λ/µn, that is

µn

∫ a

0

un ≤ aλ

so we can assume that, up to a subsequence

lim
n→+∞

µn

∫ a

0

un = aC ∈ (0, aλ]

for some constant C > 0. We can introduce the scaled functions (w̄n, ūn) as

w̄n :=

(∫ a

0

(w′n)2

)−1/2

wn, ūn :=

(
1

a

∫ a

0

un

)−1

un,

which are solutions to

(4.8)


−w̄′′n = (−ω + knūn) w̄n

−ū′′n = (λ− µnūn − k′nw̄n) ūn in (0, a)

w̄n(0) = w̄′n(a) = ū′n(0) = ū′n(a) = 0

where for convenience we let

kn := k
1

a

∫ a

0

un, µn := µ
1

a

∫ a

0

un, k′n := k

(∫ a

0

(w′n)2

)1/2

.

We observe that, from the assumption of contradiction,

kn → +∞ and µn → C ∈ (0, λ),

while we have no information on k′n. Moreover, by definition and the Dirichlet boundary condition at zero,
the sequence {w̄n}n∈N is bounded in H1(0, a), and by positivity, also {ūn}n∈N is bounded in H1(0, a), indeed
by testing the equation in ūn with ūn itself we obtain∫ a

0

(ū′n)2 + µnū
3
n ≤ λ

∫ a

0

ū2
n

and the claim follows from the assumption µn → C > 0. By the embedding theorems we have that, up to
a subsequence, both {w̄n}n∈N and {ūn}n∈N converge uniformly in (0, a) to their respective weak H1(0, a)
limits, w̄∞ and ū∞. Moreover, by renormalization and strong convergence, we have∫ a

0

ū∞ = a

and thus, in particular, ū∞ is non trivial. Finally, from the equation in w̄n we see that

kn

∫ a

0

ūnw̄
2
n =

∫ a

0

(w̄′n)2 + ωw̄2
n ≤ C ′.
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Since kn → +∞, by the uniform convergence we have that

ūnw̄n → ū∞w̄∞ ≡ 0 uniformly in (0, a).

Step 1) We now proceed and exclude the possibility that the sequence k′n is bounded. By the uniform
convergence we have

k′nūnw̄n → 0 uniformly in (0, a).

It follows, passing to the limit in the equation satisfied by ūn, that ū∞ is a non trivial solution of

(4.9)

{
−ū′′∞ = (λ− Cū∞) ū∞ in (0, a)

ū′∞(0) = ū′∞(a) = 0.

From Lemma 3.15, ū∞ can thus be only the constant λ/C, and finally, thanks to renormalization, C = λ
and ū∞ ≡ 1. By the uniform convergence of ūn to its limit, we have that for n sufficiently large

ūn >
1

2
in (0, a).

Using this estimate in the equation for w̄n we have{
−w̄′′n = (−ω + knūn) w̄n > (−ω + kn/2) w̄n

w̄n(0) = w̄′n(a) = 0.

Since kn → +∞, as soon as

(−ω + kn/2) >
( π

2a

)2

(the principle eigenvalue of the equation), by the comparison principle we have w̄n ≡ 0, against the assump-
tion that the functions (wn, un) are positive in (0, a).
Step 2) As a result, we have that k′n → +∞: similarly we can show that k′n ≥ Ckn. Indeed, let us assume
by contradiction that k′n/kn → 0, testing the equation in w̄n with ϕ smooth and compactly supported, we
find

kn

∫ a

0

ūnw̄nϕ =

∫ a

a

(w̄′nϕ+ ωw̄nϕ)

and the right-hand side is bounded in n, so that

k′n

∫ a

0

ūnw̄nϕ =
k′n
kn
kn

∫ a

0

ūnw̄nϕ→ 0

for all test function ϕ. It follows that the weak and uniform limit of ūn, ū∞ solves again (4.9), and thus

ūn → 1 uniformly in (0, a).

We can then reach a contradiction as in Step 1).
Step 3) We now show that kn ≥ Ck′n. Again by contradiction, let us assume that kn/k

′
n → 0: integrating

the equation in ūn we obtain

k′n

∫ a

0

ūnw̄n =

∫ a

0

ūn (λ− µnūn)

and the right-hand side is bounded uniformly in n. It follows that

kn

∫ a

0

ūnw̄n =
kn
k′n
k′n

∫ a

0

ūnw̄n → 0.

But then, testing the equation in w̄n with w̄n itself, we obtain, thanks to the renormalization of w̄n and the
uniform convergence,

0 < C ′ <

∫ a

0

(w̄′n)2 + ωw̄2
n = kn

∫ a

0

ūnw̄
2
n ≤ ‖w̄n‖L∞ · kn

∫ a

0

ūnw̄n → 0

a contradiction.
Step 4) In summary, we have shown so far that

kn → +∞ and k′n = O(kn).
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We already know that, up to a subsequence, the sequence {w̄n}n∈N converges to continuous function w̄∞:
we show that w̄∞ ≡ 0. Let us assume that this is not the case, then there exist 0 ≤ x0 < x1 ≤ a be such
that

inf
x∈[x0,x1]

w̄n > C > 0 for all n sufficiently large

Then for some positive constants C ′, C ′′ and n sufficiently large, we have{
−ū′′n = (λ− µnūn − k′nw̄n) ūn < −C ′′k′nūn in (x0, x1)

ūn < C ′ in (0, a).

By comparison with the super-solution

x 7→ C ′ cosh

[
(C ′′k′n)1/2

(
x− x0 + x1

2

)]/
cosh

[
(C ′′k′n)1/2

(
x1 − x0

2

)]
we have that, for ε > 0 small

sup
x∈[x0+ε,x1−ε]

ūn ≤ C ′ cosh

[
(C ′′k′n)1/2

(
x1 − x0

2
− ε
)]/

cosh

[
(C ′′k′n)1/2

(
x1 − x0

2

)]
.

Coming back to the equation in w̄n, and recalling that kn = O(k′n), we can pass to the limit and obtain

−w̄′′∞ = −ωw̄∞ in [x0 + ε, x1 − ε].
We now observe that the previous reason is true for any ε and any interval of positivity [x0, x1] of w̄∞. As
a result, in any interval of positivity [x0, x1] ⊂ [0, a] we have{

−w̄′′∞ = −ωw̄∞
w̄∞(x0) = w̄∞(x1) = 0

or

{
−w̄′′∞ = −ωw̄∞
w̄∞(x0) = w̄′∞(x1) = 0

In both case, reasoning as in Step 1), we see that w̄∞ ≡ 0 in [x0, x1], meaning that there are no intervals in
(0, a) where w̄∞ is positive, and thus

w̄n → 0 uniformly in (0, a).

Now we can repeat the reasoning of Step 3): integrating the equation in ūn we obtain

kn

∫ a

0

ūnw̄n ∼ k′n
∫ a

0

ūnw̄n =

∫ a

0

ūn (λ− µnūn)

while, from the equation in w̄n and the uniform limit proved before

0 < C ′ <

∫ a

0

(w̄′n)2 + ωw̄2
n = kn

∫ a

0

ūnw̄
2
n ≤ ‖w̄n‖L∞ · kn

∫ a

0

ūnw̄n → 0

a contradiction. �

Lemma 4.12. Let (w, u) be any classical solution of (4.7) with both components non negative and nontrivial.
There exist two constants C > 0 and µ̄ > 0 such that∫ a

0

|(log u)′|2 > C if µ ∈ (0, µ̄).

Proof. Let us consequence a (wn, un) of positive solutions to (4.7) for µ = µn such that

lim
n→+∞

∫ a

0

|(log un)′|2 = 0

By the embeddings theorems we have that

lim
n→+∞

supx,y∈(0,a) |un(x)− un(y)|
‖un‖L∞(0,a)

= 0.

and, moreover, since un is positive,

(4.10) lim
n→+∞

inf(0,a) un

sup(0,a) un
= 1.
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From the equation in wn we see that {un}n∈N is uniformly bounded from above and away from zero. Indeed,
if inf un → +∞, then for n sufficiently large{

−w′′n = (−ω + kun)wn >
(
π
2a

)2
wn

wn(0) = w′n(a) = 0
=⇒ wn ≡ 0

while, if supun → 0, then for n sufficiently large{
−w′′n = (−ω + kun)wn <

(
π
2a

)2
wn

wn(0) = w′n(a) = 0
=⇒ wn ≡ 0

and in both cases we reach a contradiction with the positivity of wn. This, together with (4.10) implies at
un converges uniformly to a nontrivial constant C. Again by the equation in wn, we have that necessarily

un →
ω

k
+

1

k

( π
2a

)2

uniformly in (0, a).

Up to a renormalization, we also deduce that(
‖wn‖L∞(0,a)

)−1
wn → sin

( π
2a
x
)

strongly in H1(0, a) and uniformly. Integrating the equation in un, we have

k

∫ a

0

unwn = λ

∫ a

0

un − µn
∫ a

0

u2
n

and thus we have that {wn}n∈N is uniformly bounded in (0, a), so that

wn → C sin
( π

2a
x
)

for a non negative constant C. Consequently, using these information in the equation satisfied by un, we
have that un is bounded uniformly in H1(0, a), and in we can thus take the weak limit of the equation to
see that

0 =
[
λ− kC sin

( π
2a
x
)] [ω

k
+

1

k

( π
2a

)2
]
,

which is impossible to solve and gives us the desired contradiction. �
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