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Abstract. For a class of optimal partition problems involving the half-Laplacian

operator and a subcritical cost functionals, we derive the optimal regularity
of the density-functions which characterize the partitions, for the entire set of

minimizers. We present a numerical scheme based on the arguments of the

proof and we collect some numerical results related to the problem.

1. Introduction

In recent time, the study of nonlocal operators has become a dominant subject
in the regularity theory of minimization problems and elliptic equations. Origi-
nally inspired by modelling reasons, the study of non-local diffusion operators has
revealed important in order both to test and to extend already understood theories
concerning the behaviour of solutions to local problems.

Of the many non-local operators now object of study in the literature, this
paper is concerned with possibly the easiest yet most fundamental one: the half-
Laplacian. Given a smooth function u ∈ C∞0 (RN ), the half-Laplacian operator
(−∆)1/2 is defined as the singular integral

(−∆)1/2u := CN pv

∫
RN

u(x)− u(y)

|x− y|N+1
dy

where the constant CN is a normalization constant and pv stands for the principal
value. For non-smooth functions, whenever possible, the operator is defined in the
distributional sense (see [9], or the more recent [8], for comprehensive theory of
the operator). As it is now well known, the above operator is related both to the
infinitesimal generator of a Levy α-stable diffusion process and, via the Fourier
transform F , to the multiplication operator whose symbol is given by |ξ| (see [8,
Proposition 3.3]), that is

∀u ∈ S(Rk) (−∆)1/2u = F−1(|ξ|û)

where S(Rk) is the space of Schwartz functions, û = F(u) and F−1 is the inverse
transform. Moreover, from a variational point of view, the half-Laplacian can be
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2 A. ZILIO

related to the differential of the fractional Sobolev seminorm of H1/2(RN ), that is

|u|2H1/2(RN ) := 〈(−∆)1/2u, u〉 =
CN
2

∫
RN×RN

|u(x)− u(y)|2

|x− y|N+1
dxdy.

The paper is devoted to the study of the regularity of optimal partition problems
involving the fractional operator (−∆)1/2. With this we mean that, given a set
Ω ⊂ RN and a cost functional J associated to a suitable set of partitions of Ω,
we wish to find the regularity shared by all the partitions that minimize J . More
precisely, let us consider the functional space

H1/2(RN ) :=
{
u : ‖u‖2H1/2(RN ) := |u|2H1/2(RN ) + |u|2L2(RN ) < +∞

}
and let Ω ⊂ RN be bounded and smooth set (i.e., with at least C1 boundary).
Given some suitable functions Fi : Ω× R→ R, we introduce the functional

(1.1a) J(u1, . . . , uk) :=


k∑
i=1

(
1

2
|ui|2H1/2(RN ) +

∫
Ω

Fi(x, ui)dx

)
if ui · uj = 0 a.e. for every j 6= i

+∞ otherwise

and set the optimal partition problem on

(1.1b) SkL2 :=
{

(u1, . . . , uk) : ui ∈ H1/2
Ω (RN ), ‖ui‖L2(RN ) = 1

}
where we used the notation H

1/2
Ω (RN ) := {w ∈ H1/2(RN ) : w|RN\Ω = 0}. The

main results we shall prove in the paper are the followings.

Theorem 1.1. Let Ω ⊂ RN be bounded and smooth set. For each i = 1, . . . , k, let
Fi : Ω×R→ R be a Carathéodory function (that is, (x, s) 7→ Fi(x, s) is measurable
in x and continuous in s) such that

|Fi(x, s)| ≤ Ci(1 + |s|p) ∀x ∈ Ω, s ∈ R
for a suitable constant Ci ≥ 0, where p < p] = 2N

N−1 . Then there exists at least

a minimizer of J in SkL2 . Moreover, if Fi(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then any

minimizer u := (u1, . . . , uk) ∈ C0,α(RN ;Rk) for any α ∈ (0, 1/2).

Theorem 1.2. Under the assumptions of Theorem 1.1, let us assume also that

(A) each function Fi is independent of x, Fi ∈ C2,ε(R) for some ε > 0 and
F ′i (0) = 0.

Then any minimizer u of J over the set SkL2 belongs to C0,1/2(RN ;Rk) and satisfies
the following Euler-Lagrange equation

ui

(
(−∆)1/2ui − F ′i (ui)

)
= 0 a.e. in Ω.

Remark 1.3. One could also consider partition problems of unbounded domains, for
example with Ω = RN , if the functions Fi can be used to ensure compactness: this
can be achieved, for instance, if Fi(x, s) = V (x)s2, with V positive and V (x)→ +∞
for |x| → ∞. In such a case the correct functional setting in given by the space

H
1/2
V (RN ) :={

w ∈ H1/2(RN ) : ‖w‖2
H

1/2
V (RN )

:= |w|2H1/2(RN ) +

∫
RN

V w2dx <∞
}
.
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Associating to the bounded set Ω its indicator function

χΩ(x) :=

{
1 if x ∈ Ω

+∞ if x 6∈ Ω,

we see that H
1/2
Ω (RN ) ≡ H

1/2
χΩ (RN ). We shall not address this extension in the

following, though the theory here developed may be used also to cover this case
with little modifications.

At the moment no result asserting the regularity of the partition sets {(ω1, . . . , ωk)}
is known. In any case we observe that from Theorem 1.1 we can deduce that any
subset ωi = {ui > 0}∪{ui < 0} is an open set, which is already a non trivial result.
Theorems 1.1 and 1.2 are analogous to well established results found in the case of
standard diffusion operators, see for instance [3, 10]: in particular, they constitute
the first step in the proof of the regularity of the free-boundary ∪i∂ωi, as done in
[3, 11].

As a possible application, we can consider the case Fi ≡ 0. In such a situation,
the optimal partition problem (1.1) is precisely given by the problem of finding k
disjoint subsets ω1, . . . , ωk of Ω such that the functional

(ω1, . . . , ωk) 7→
k∑
i=1

λ1(ωi)

is minimal. Here λ1(ωi) stands for the first eigenvalue of the half-Laplacian in ωi,
defined as

λ1(ωi) := inf
{
|u|2H1/2(RN ) : ‖u‖L2(RN ) = 1, u = 0 a.e. on RN \ ωi

}
.

Remark 1.4. From a point of view of the applications, mainly linked to pattern
formation in relativistic quantum systems, one could also consider a slightly dif-
ferent formulation of the optimal partition problem, as follows. Let us fix k ∈ N
non-negative constants m1, . . . ,mk and let us introduce the operator (−∆+m2

i )
1/2,

which acts on smooth functions as

∀u ∈ S(Rk) (−∆ +m2
i )

1/2u = F−1((ξ2 +m2
i )

1/2û).

Accordingly, one could introduce as a cost functional

R(u1, . . . , uk) :=


k∑
i=1

(
1

2
〈(−∆ +m2

i )
1/2ui, ui〉+

∫
Ω

Fi(x, ui)dx

)
if ui · uj = 0 a.e. for every j 6= i

+∞ otherwise

again defined over the set SkL2 . The same regularity results available for the func-
tional J can be recast and extended without effort to the case of the functional
R.

The last section is devoted to some numerical results. The simulations are ob-
tained using an approximation scheme which is based on the proof of the Theorems
1.1 and 1.2: some comparisons with the results obtained in the case of the standard
Laplacian are also presented.

To conclude, we would like to mention that results similar to those discussed
above are available also in the case of any fractional power of the Laplacian (−∆)s

with s ∈ (0, 1): some of the needed preliminaries can be already found in [13].
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2. Proof of the results

As a first step, we shall prove that, under the assumptions of Theorem 1.1, the
optimal partition problem admits at least a solution. Later we shall concentrate on
the regularity of the whole set of solutions.

Lemma 2.1. Let Ω ⊂ RN be bounded and smooth set. For each i = 1, . . . , k, let
Fi : Ω×R→ R be a Carathéodory function (that is, (x, s) 7→ Fi(x, s) is measurable
in x and continuous in s) such that

|Fi(x, s)| ≤ Ci(1 + |s|p) ∀x ∈ Ω, s ∈ R

for a suitable constant Ci ≥ 0, where p < p] = 2N
N−1 . Then there exists a minimizer

of J in SkL2 .

Proof. The lemma follows by the direct method of the calculus of variations. Indeed,
we evince directly from the assumptions on the functions Fi that the functional J
is weakly lower semicontinuous in H1/2(RN ;Rk) and moreover, since

lim
‖u‖

H1/2→∞
J(u) = +∞,

the functional J is also coercive in the weak topology of H1/2(RN ;Rk) (see [7,
Example 1.14]). �

The regularity of the solutions to the previous minimization problem is in gen-
eral hard to study directly. In order to simplify the analysis, in what follows we
shall introduce two families of functionals which are related to the previous one in
a precise way. The first family precisely implements the disjointness constraint in a
relaxed way, through a penalization term: in particular we shall show that any se-
quence of minima to the family of functional converges to a minimum of the original
functional. Our goal is to show that the topology of this convergence is sufficiently
strong in order to ensure the regularity of the limiting densities. Unfortunately,
since no result is known about the uniqueness of the optimal partition, the first
proposed approximating procedure may fail to conclude the regularity of the whole
set of optimal partitions. To avoid this issue, we need to introduce another family
of functionals.

We start with the easier family of functionals.

Definition 2.2. Under the functional setting of Theorem 1.1, for any β > 0, let
us introduce

Jβ(u1, . . . , uk) :=

k∑
i=1

(
1

2
|ui|2H1/2(RN ) +

∫
Ω

Fi(x, ui)dx

)
+ β

∑
j<i

∫
Ω

u2
iu

2
jdx.

Lemma 2.3. Under the assumptions of Theorem 1.1, for every β > 0 there exists
a minimizer uβ ∈ SkL2 of Jβ. Moreover, there exists a constant C > 0 (independent
of β) such that ‖uβ‖H1/2(RN ;Rk) ≤ C.

Proof. The proof is analogous to the one given in the limiting case β = +∞. The
main difference is represented by the presence of the interaction term, which is
not sub-critical if N ≥ 3. In this situation, it is sufficient to recall that, thanks
positivity of β, the last term is lower semicontinuous, as a consequence of the
Fatou’s Lemma. �
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Lemma 2.4. It holds Γ − limβ→+∞ Jβ = J (w.r.t. the weak H1/2(RN ;Rk)-
topology). Moreover, any sequence of minimizers {uβ} to Jβ converges weakly in

H1/2(RN ;Rk), up to a subsequence, to a minimizer of J .

Proof. The family of functionals Jβ is increasing in β and converges pointwise to
the functional J . As a consequence Γ − lim Jβ = J . The family Jβ is also equi-
coercive and this implies, up to subsequences, the convergence of the minimizers.
See [7, Proposition 5.4] and [7, Corollary 7.20] for further details. �

As mentioned before, even though the family {uβ} converges, up to subse-
quences, to a minimizer of J , at the moment we can not say that any minimizer of
J can be approximated in this way. In order to obtain a stronger conclusion, we
need another step, involving the introduction of another functional, which will be
the main object of the analysis in the following. For this purpose, let

e(s) :=
√

1 + s2

(we observe preliminarily that |e′(s)| < 1 for any s ∈ R) and let ū ∈ SkL2 be any
minimizer of J .

Definition 2.5. Under the functional setting of Theorem 1.1, for any β > 0, we
let

J∗β(u1, . . . , uk) :=

k∑
i=1

(
1

2
|ui|2H1/2(RN ) +

∫
Ω

[Fi(x, ui) + e(ui − ūi)] dx

)
+
β

2

∑
j<i

∫
Ω

u2
iu

2
jdx.

It is immediate to see that the proof of existence of minimizers developed for the
functional Jβ covers also the functional J∗β . Moreover, since the functional J∗β can
be decomposed as

J∗β(u) = Jβ(u) +

k∑
i=1

∫
Ω

e(ui − ūi)dx

it easily follows that any the sequence of minima {uβ} convergence weakly in

H1/2(RN ;Rk) and strongly in L2(RN ;Rk) to the minimum ū of J .

Lemma 2.6. There exists C > 0 independent of β such that

‖uβ‖2H1/2(RN ;Rk) + β

∫
RN

∑
j 6=i

u2
i,βu

2
j,βdx ≤ C.

Moreover if Fi(x, ·) ∈ C1(R) for a.e. x ∈ Ω, each function ui,β is a smooth solution
to the Euler-Lagrange equation

(−∆)1/2ui,β + fi(x, ui,β) + e′(ui,β − ūi)ui,β = γi,βui,β − βui,β
∑
j 6=i

u2
j,β

in Ω together with the boundary condition ui ≡ 0 in RN \ Ω. (here fi(x, s) :=
∂sFi(x, s)). The Lagrange multipliers γi,β are bounded uniformly with respect to β.

Proof. The first conclusion follows from the estimate

J∗β(uβ) ≤ J∗β(ū) = J(ū) ≤ C
and the coercivity of J∗β . Once the constraints are expressed through the Lagrange
multipliers, the Euler-Lagrange equations can be derived classically, considering
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smooth variation of the minimizers u. To conclude, testing the equation in ui,β by
ui,β itself, the identity

γi,β = |ui,β |2H1/2(RN )

+

∫
Ω

ui,β

(
fi,β(x, ui,β) + e′(ui,β − ūi)ui,β + βui,β

∑
j 6=i

u2
j,β

)
dx

yields the uniform bound for the multipliers. �

Corollary 2.7. There exists a constant C > 0, independent of β, such that
‖uβ‖L∞(RN ;Rk) ≤ C.

Proof. This a consequence of the Brezis-Kato inequality, suitably generalized to the
fractional setting (see [2, Section 5], and in particular [2, Theorem 5.2]). We give a
sketch of the proof of such result in the appendix. �

We are in a position to apply the result contained in [12], which implies a first
uniform regularity estimate for the densities uβ .

Theorem 2.8. For any α < 1/2, there exists a constant C > 0 which is indepen-
dent of β, such that

‖uβ‖C0,α(RN ;Rk) ≤ C ∀β > 0.

In particular, the sequence uβ is compact in the H
1/2
Ω (RN ;Rk) topology and the

uniform topology, and the limit ū of the family belongs to C0,α(RN ;Rk) for any
α < 1/2.

Proof. This is a direct consequence of [12, Theorem 1.3]. The only difference here is
that the forcing term in the Euler-Lagrange equation (see Lemma 2.6) here depends
also on the variable x. But the same proof of [12, Theorem 1.3] works also in this
case, under the verified hypothesis there exists a constant C > 0 such that

sup
β>0
‖fi(x, ui,β) + e′(ui,β − ūi)ui,β − γi,βui,β‖L∞(Ω) < C. �

We can conclude with the optimal regularity result mentioned in the introduc-
tion.

Theorem 2.9 (Theorem 1.2). Under the previous assumptions, let us also suppose
that

(A) each function Fi is independent of x, Fi ∈ C2,ε(R) for some ε > 0 and
F ′i (0) = 0.

Then any minimizer u of J over the set SkL2 belongs to C0,1/2(RN ;Rk) and satisfies
the following Euler-Lagrange equation

ui

(
(−∆)1/2ui − F ′i (ui)

)
= 0 a.e. in Ω.

Proof. As of now, we have shown that the minimizer u ∈ C0,α(RN ;Rk) for any
α < 1/2 and that the approximating sequence uβ converges to u strongly in

H1/2(RN ;Rk) and uniformly in RN . Passing to the limit in the Euler-Lagrange
equation and using the uniform estimate in Lemma 2.6, we infer that u satisfies

uiuj = 0 in Ω, for any i 6= j

ui
(
(−∆)1/2ui − F ′i (ui)

)
= 0 a.e. in Ω

ui = 0 in RN \ Ω.
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We are then in a position to apply the result in [12, Theorem 1.2] (see also [12,
Proposition 9.2.]). �

3. Numerical simulations

We now present some numerical validations of the theoretical results obtained
so far. In the following we shall present a numerical algorithm which is based on
the approximation scheme developed in the previous section, which has then no
pretensions of being the most suitable from a computational point of view. All the
simulations were carried out with a finite element approximation scheme, using the
free software FreeFem++, available at http://www.freefem.org/ff++/.

Let us consider a specific example, which has also a possible interest in the
applied science. Let us consider the optimal partition in k subsets of the unit ball
in R2, that is, the optimal partition induced by the functional

(3.1) J(u1, . . . , uk) :=


k∑
i=1

1

2
|ui|2H1/2(R2) if ui · uj = 0 a.e. for every j 6= i

+∞ otherwise

constrained on the set SkL2 with Ω = B1(0). Reasoning as in Section 2, we recall that
the minimizers of the previous functional can be approximated by the minimizers
of the approximating functional

Jβ(u1, . . . , uk) :=

k∑
i=1

1

2
|ui|2H1/2(R2) + β

∫
RN

∑
j<i

u2
iu

2
j

and, finally, the minimizers can be obtained as solutions to the Euler-Lagrange
equation

(3.2) (−∆)1/2ui,β + βui,β
∑
j 6=i

u2
j,β = γi,βui,β

for suitable Lagrange multipliers γi,β : a meta-algorithm inspired by this approxi-
mation is illustrated in Algorithm 1. Let us observe that, in order to find a solution
to the nonlinear system of equations, we have used a fixed point method based
on the steepest descent algorithm alternated with a projection on the constraint
SkL2 . Being the underlying problem strongly non-convex, no results about the con-
vergence to the minimal solution are known, if not under the assumptions that
the initial guess is already close to the optimal configuration. Similar results may
be found for example in [1], where a different algorithm is presented to study the
optimal partition problem of the standard Laplace-Dirichlet eigenvalues.

The only non trivial task in the algorithm is given by the non-local equation in
ui: to solve it, we can make use of the extensional formulation of the half-Laplacian
(see [4] and reference therein), which relates the equation (3.2) to

(3.3)


−∆vi = 0 in R3

+ = R2 × R+

∂νvi + βvi
∑
j 6=i v̄

2
j = γiv̄i on B1 × {0}

vi ≡ 0 in R2 \B1 × {0}

where vi, v̄i ∈ H1(R3
+) satisfy vi(·, 0) = ui and v̄i(·, 0) = ūi. The advantage of this

formulations is that it can be readily approximated using finite element schemes,
which are implement, for example, in the free software FreeFem++. To complete
the approximating procedure, since (3.3) is defined on an unbounded set, we need
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Algorithm 1 Approximating scheme

1: procedure ApproximatingProcedure
2: initialize γi, ui, ūi
3: β ← 1
4: β̄ ← a large constant
5: repeat
6: repeat
7: Solve (−∆)1/2ui + βui

∑
j 6=i

ū2
j = γiūi, ui ≡ 0 in R2 \B1

8: ūi ←
αui + (1− α)ūi
‖αui + (1− α)ūi‖L2

. Projection on SkL2 , α ∈ (0, 1)

9: γi ← |ūi|2H1/2(R2) + β

∫
R2

ū2
i

∑
j 6=i

ū2
jdx

10: until convergence in L2 with a prescribed tolerance
11: β ← 2β
12: until β > β̄ and convergence in L2

to consider a bounding box QL ⊂ R3
+, QL = (−L,L)2 × (0, 2L) with L > 0 large,

and reformulated the equation as
−∆vi = 0 in QL

∂νvi + βvi
∑
j 6=i v̄

2
j = γiv̄i on (−L,L)2 × {0}

vi ≡ 0 in (−L,L)2 \B1 × {0}

for vi, v̄i ∈ H1
0,+(QL) = {w ∈ H1

0,+(QL), w = 0 on QL \ (−L,L)2 × {0}}. This last
approximation is valid since, by the comparison, it is possible to show the solutions
of equation (3.3) decay away from the origin x = 0. As a result, we can formulate
the final Algorithm 2.

Algorithm 2 Approximating scheme revised

1: procedure ApproximatingProcedure
2: L, β̄ ← large constants
3: initialize vi, v̄i ∈ H1

0,+(QL), γi ∈ R
4: β ← 1
5: repeat
6: repeat

7: Solve


−∆vi = 0 in QL

∂νvi + βvi
∑
j 6=i v̄

2
j = γiv̄i on (−L,L)2 × {0}

vi ≡ 0 in (−L,L)2 \B1 × {0}

8: v̄i ←
αvi + (1− α)v̄i

‖αvi + (1− α)v̄i‖L2((−L,L)2×{0})

9: γi ← |v̄i|2H1
0,+(QL) + β

∫
(−L,L)2×{0}

v̄2
i

∑
j 6=i

v̄2
jdx

10: until convergence in L2 of the traces up to a prescribed tolerance
11: β ← 2β
12: until β > β̄ and convergence in L2 of the traces
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Figure 1. Optimal partitions related to the problem 3.1. The
non complete symmetry of the solutions, which can be expected
by comparison with the partition problem involving the standard
Laplacian, may be an effect of the presence of the bounding box
QL: the more L is chosen large, the more such effect should be
smoothed out. In any case, even for large values of L this phenom-
enon seems persistent.

Remark 3.1. It should be mentioned that, though the extensional formulation of
the fractional Laplacian alleviates us from solving non-local equations, it trans-
forms N -dimensional optimal partition problems in to N+1-dimensional boundary
partition problems. For example, a planar problem is solved resorting to a fully
three-dimensional one. Since both three-dimensional partition problem and, in
general, boundary problems are stiff from a numerical point of view, it may seem
surprising that the algorithms presented in this section converge in general, with
just simple tunings of the parameters.

Remark 3.2. In order to obtain more accurate solutions, but sacrificing the effi-
ciency, we have also inserted a step involving mesh-refinements.

As a result of the numerical simulation, we collect in Figure 1 the solutions
obtained for the problem (3.1) in the case of k = 3 components and k = 5 compo-
nents. In Figure 2 we show the corresponding solutions in the case of the standard
Laplace operator: comparing the two situations, it is possible to see that, even
though qualitatively very similar, the solutions may be different not only with re-
spect to the regularity of their respective densities, but also in the geometry of the
sets constituting the partition.
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Figure 2. Optimal partitions related to the problem 3.1, in the
case the standard Laplace operator, obtained with the same ap-
proximating scheme employed for the half-Laplacian (see also [6]
for further examples). The solutions are qualitatively similar, even
though in this former case the transition between two different den-
sities is smoother (in particular, solution are Lipschitz-continuous,
as shown in [10])

Figure 3. Optimal partitions related to the problem 3.1, in the
case of k = 10 components. It is tempting to extend the hexagonal
conjecture (see for instance [5, 1]) also to the non-local setting.

Appendix A. The Brezis-Kato inequality

In this last section, we will give a proof of Corollary 2.7, using in fact the following
version of the Brezis-Kato inequality
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Lemma A.1. Let Ω ⊂ RN be a smooth and bounded domain and let us consider
u ∈ H1/2

Ω (RN ,Rk) to be solutions to the system

(A.1) (−∆)1/2ui = ai(1 + |ui|)− βui
∑
j 6=i

u2
j .

where ai ∈ LN (RN ). Then ui ∈ L∞(RN ) for all i = 1, . . . , k and the norm can be
bounded uniformly in β with a constant that depends only on the H1/2-norm of u
and the LN -norm of ai.

Remark A.2. In order to apply the previous result to the setting of Corollary 2.7,
it is sufficient to introduce the functions

ai,β :=
(γi,β −Ke′(ui,β − ūi))ui,β − fi(x, ui,β)

1 + |ui,β |
and to observe that, thanks to the sub-criticality of fi and the uniform boundedness
of Lagrange multipliers, we have ‖ai,β‖LN (RN ) ≤ C uniformly in β.

Proof. In order to simplify the proof, we resort to the extensional formulation of
the half-Laplacian, relating the system (A.1) to

−∆vi = 0 in RN+1
+

∂νvi = ai(1 + |vi|)− βvi
∑
j 6=i v

2
j on Ω ⊂ ∂RN+1

+

vi = 0 on RN \ Ω

where vi ∈ H1(RN+1
+ ) satisfy vi(·, 0) = ui. Let gε ∈ C∞(R) be a smooth approx-

imation of the modulus functions, that is, gε(t) =
√
ε+ t2. The Stampacchia’s

lemma and the Lebesgue’s theorem ensure that

gε(vi)→ |vi| in H1(RN+1
+ ), g′ε(vi)vi → |vi| in L2(RN )

For any test function φ ∈ H1(RN+1
+ ) such that φ ≥ 0, we have∫

RN+1
+

∇gε(vi)∇φ+

∫
RN

βg′ε(vi)vi
∑
j 6=i

v2
jφ

=

∫
RN

g′ε(vi)ai(1 + |vi|)φ−
∫
RN+1

+

g′′ε (vi)|∇vi|2φ

and letting ε→ 0+ we obtain∫
RN+1

+

∇|vi|∇φ+

∫
RN

β|vi|
∑
j 6=i

v2
jφ ≤

∫
RN

sgn(vi)ai(1 + |vi|)φ.

(similar computations are present in [12, Lemma 5.5]). As a result, each |vi| ∈
H1(RN+1

+ ) is a subsolution of the equation in wi ∈ H1(RN+1
+ )

−∆wi = 0 in RN+1
+

∂νwi = |ai|(1 + wi) on Ω ⊂ ∂RN+1
+

wi = 0 on RN \ Ω

Thus, if we show a uniform bound for the functions wi in L∞, by the comparison
principle we could evince that the same bounds holds for the functions |vi|. To con-
clude it is then sufficient to recall the Brezis-Kato estimate for the half-Laplacian,
shown in [2, Theorem 5.2], which implies the sought L∞ bound. �
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[1] B. Bourdin, D. Bucur, and É. Oudet. Optimal partitions for eigenvalues. SIAM J. Sci. Com-

put., 31(6):4100–4114, 2009/10.
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involving the square root of the laplacian. Preprint arXiv:1211.6087.
[13] S. Terracini, G. Verzini, and A. Zilio. Uniform Hölder regularity with small exponent in
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