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A. Scheinkman4
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Abstract

We study the speculative value of a finitely lived asset when in-
vestors disagree and short sales are limited. In this case, investors
are willing to pay a speculative value for the resale option they obtain
when they acquire the asset. We characterize the equilibrium spec-
ulative value as a solution to a fixed point problem for a monotone
operator F. A Dynamic Programming Principle applies and is used
to show that the minimal solution to the fixed-point problem is a vis-
cosity solution of a naturally associated (non-local) obstacle problem.
This obstacle type free boundary problem was the focus of Berestycki
et al. (2014), who proved a comparison principle and existence and
uniqueness of the viscosity solution. Combining the monotonicity of
the operator F and the comparison principle we obtain several compar-
ison of solution results. We also use the characterization of the exercise
boundary of the obstacle problem to study the effect of an increase in
the costs of transactions on the value of the bubble and on the volume
of trade, and in particular to quantify the effect of a small transaction
(Tobin) tax.
JEL Classification: G1, G12, G14, G18

∗The research reported here received funding from the European Research Coun-
cil under the E.U. Seventh Framework Programe (FP 2007-2013) ERC advanced grant
agreement no. 321186: “Reaction-diffusion equations, propagation and modelling” to H.
Berestycki.

1



Keywords: Asset-price bubble, finitely-lived financial asset, heteroge-
neous beliefs, non-local free boundary problem, dynamic programming,
stochastic control.

1 Introduction

Asset price bubbles are episodes in which asset prices seem to vastly exceed
fundamentals. Well known historical episodes that have been deemed as
bubbles include the Dutch Tulip-Mania in the 17th century, the South-Sea
Bubble in the 18th century, the Railway-Mania in 19th century Britain,
the Roaring-Twenties in the 20th century, the Internet or dot.com, and the
recent Credit bubble. One striking observation is that bubble episodes are
often accompanied by trading frenzies.1

Economists have written many theoretical models of equilibria in which
divergence between fundamental valuations and market prices can be in
principle observed. One standard class of models shows that bubbles can
actually survive when agents have rational expectations and are symmetri-
cally informed. In these models, agents pay more for an asset than the value
of its expected discounted future dividends, because they hope to sell the
asset for an even higher price in the future, at least with some probability.
Asset bubbles can actually collapse, but they cannot be expected to implode
for sure. Hence these models must assume that assets are, at least in prin-
ciple, infinitely lived. In addition, rational-bubbles models are incapable of
explaining the observed correlation between bubbles and trading.

An alternative class of models for asset-pricing bubbles combines agents
with fluctuating heterogeneous beliefs and an assumption that it is more
expensive to go short an asset than going long that same asset.2 An ob-
servation that goes back to Miller (1977) in a static context is that in the
presence of these cost asymmetries, the view of optimists - natural buyers
- is expressed more fully than that of pessimists - natural sellers. Even if
beliefs are on average unbiased, prices would be biased. Fluctuating beliefs

1See Carlos et al. (2010) for the increase in trading volume during the South Sea
Bubble, Hong and Stein (2007) for the Roaring Twenties, Cochrane (2002), Lamont and
Thaler (2003) to Ofek and Richardson (2003) for the internet bubble, and Xiong and Yu
(2011) for evidence concerning a recent Chinese warrants bubble

2These two basic assumptions - heterogeneous beliefs and higher costs of going short -
are far from standard in the asset-pricing literature. The existence of differences in beliefs
is obvious for the vast majority of market practitioners, but economists have produced a
myriad of results showing that “rational” investors cannot agree to disagree. Similarly,
there are good economic reasons why investors should have more difficulty going short
than going long, but most economic models assume no asymmetry.
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give current optimists the hope that an even more optimistic buyer may
appear in the future. Hence buyers would be willing to pay more than the
value they attribute to an assets’ future payoffs, because the ownership of
the asset gives her the option to resell the asset to a future optimist.3

Scheinkman and Xiong (2003), inspired by a pioneer paper by Harrison
and Kreps (1978), developed a fully dynamic continuous time equilibrium
model of asset price bubbles in which heterogeneous beliefs are generated
because agents disagree on the precision of the information they observed.4

Scheinkman and Xiong (2003) studied a market for a single asset in lim-
ited supply and many risk-neutral agents facing proportional trading costs.
For technical reasons, they ruled out short-sales although their qualitative
results would survive if instead they had only assumed costly short-sales.
There are two groups of agents and traders in each group attribute exces-
sive precision to a different set of signals. As the information on the signals
flows, the group of agents that places excessive confidence on the value of
a particular signal would overreact to the realizations of that signal. In
this way, the group of traders that is relatively optimistic now may become
relatively pessimistic in the future. In a linear-Gaussian framework the dif-
ference in mean beliefs x is the state variable of the model. The buyer of the
asset today acquires an option to resell that asset to other more optimistic
traders in the future. In equilibrium buyers would be part of the most opti-
mistic group but would be willing to pay in excess of their optimistic views,
because they value the option to resell. The value of this option can be
legitimately titled a bubble. The resale option is American, that is it can be
exercised at any time. Thus the value of the resale option is given by an as-
sociated optimal stopping time but the value of stopping in turn is given by
a stopping time problem faced by the new buyer. Because of this recursive
aspect in the option valuation, the value of the option is characterized by a
non-local obstacle problem. To exploit stationarity, they assumed that the
asset was infinitely lived, and were able to construct an explicit solution to
the obstacle problem and show that the optimal stopping was characterized
by a level in the difference in (mean) beliefs. In equilibrium, each time the

3An alternative mathematical theory of bubbles postulates only no-arbitrage. In the
simplest case of an asset that pays only a final dividend and complete markets, the price
process of the asset, St, is a local martingale under the unique risk-neutral measure Q.
The fundamental value of the asset S∗t is the expected value (under Q) of the payoff, and
necessarily a martingale. The difference between S and S∗ is non-negative and is defined
as the bubble. For a summary and further references see Protter (2012). Because it is a
no-arbitrage theory, there are no implications concerning trading volume.

4See also Chen and Kohn (2011) and Dumas et al. (2009)
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difference in beliefs between the most optimistic group and the group of the
current asset holders reaches a critical value, a trade occurs. Scheinkman
and Xiong (2003) also showed that as trading costs approaches zero, trading
volume goes to infinity and that when trading costs are small, increases on
the degree of overconfidence that traders have in their own signal increase
the value of the option and the volume of trade.

In this paper we extend the model of Scheinkman and Xiong (2003) to
finitely lived assets. This extension makes the model applicable to credit
instruments, which are typically finitely lived. A finite horizon model is also
needed to explain the bubble on the value of Chinese warrants that was
documented by Xiong and Yu (2010).

When assets have a finite life the value of the option q(x, t) depends on
the difference in mean beliefs x and time to expiration t. The function q
must satisfy a fixed point problem that is a natural finite-horizon version
of the problem studied by Scheinkman and Xiong (2003). However, while
Scheinkman and Xiong (2003) were able to produce an explicit solution, we
must use a monotone fixed point argument, partly adapted from Chen and
Kohn (2011), to establish the existence of a solution. As Bouchard (2007)
we establish a Dynamic Programming Principle and use it to show that the
minimal solution q to the fixed-point problem5 must be a viscosity solution
of a naturally associated (non-local) obstacle problem.6 We can then exploit
results in Berestycki et al. (2014) that guarantee the existence and unique-
ness of the viscosity solution to the obstacle problem. Instead of a critical
value in the difference in opinions that triggers trades we obtain an exercise
boundary k(t) - trading occurs at t if the beliefs of the most optimistic group
exceeds that of the current holders by at least k(t). By symmetry, the buyer
of the asset has mean beliefs that differ from the mean beliefs of the cur-
rent holder by −k(t). We define the speculative component (bubble) as the
amount that an agent pays in addition to her own valuation, that is exactly
q(−k(t), t). Buyers will be part of the most optimistic group and the dif-
ference between their valuation and a rational fundamental valuation could
also be rightfully claimed as a portion of the bubble. Thus the definition of
bubble that we use is somewhat conservative.

The equilibrium solution q to value of the bubble satisfies some natural
monotonicity properties; it increases with the time to expiration or with

5In Scheinkman and Xiong (2003) the focus is also on a minimum solution, because it
minimizes the size of the bubble

6Zariphopoulou (1994) and Theorem VIIII.5.1 in Fleming and Soner (1993) are early
examples of the use of the dynamic programming principle to establish the necessity of
viscosity solutions.
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the difference in opinions x. In addition, q is a convex function of x, and
as a consequence, an increase in the volatility of the difference in opinions
σ increases q. An increase in the proportional transaction costs c or in the
risk-free rate r decreases q. Some monotonicity properties are established
using the monotonicity of the operator defining the fixed point q; others
use a comparison principle established in Berestycki et al. (2014) for the
associated obstacle problem. Berestycki et al. (2014) also shows that the
exercise boundary k can be obtained from a related local obstacle problem
that also satisfies a comparison principle. Their results insure that k is
increasing with t and goes to infinity as t → T, that is as the time to
expiration converges to zero. The comparison principle allows us to prove
monotonicity properties for the exercise boundary k. The exercise boundary
is increasing as a function of c, σ or r. Combining the monotonicity results
on the value of the resale option q and the exercise boundary k, one can
show that the size of the bubble q(−k(t), t) decreases with c or r. Thus a
decrease in the cost of transaction or in the risk-free interest rate increase
both the volume of trades and the size of the bubble. This shows that interest
rates and transaction costs are potential sources for the correlation between
bubbles and trading volume that is often observed. As c→ 0, k(t)→ 0 and
thus owners of the asset exercise their option to sell soon after it gets in the
money. Nonetheless the value of the resale option is maximized, illustrating
the local time character of trading in the limit. Although the monotonicity
results of q and k do not lead to a straightforward answer on the dependence
of the size of the bubble on the volatility of the difference of opinions σ, we
are able to show using a rescaling argument that b(t) increases with σ, and
thus the size of the bubble increases with the volatility of differences in
opinion.

Berestycki et al. (2014) also shows that as c → 0, k(t, c) ∼ c1/3k̄(t),
and give an explicit formula for k̄. We use this result and some formal
asymptotics to argue that the elasticity of the median time between trades
is 2/3 at c = 0. In addition, we show that the elasticity of the bubble with
respect to c goes to zero as c→ 0. If one think of a Tobin Tax as an increase
in c, these results argue that starting from a scenario of small transaction
costs, a Tobin Tax has a large effect on volume, but a much more modest
effect on the size of the bubble.

The paper is organized as follows. Section 2 contains a description of
the model and a derivation of the stochastic formulation of the equilibrium
value of the resale option. The existence of a minimal fixed point to this
stochastic formulation is established in Section 3. In Section 4, we give an
intuitive derivation of the obstacle problem that the equilibrium value of the
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option must satisfy and provide statements of the comparison principle and
existence theorems that Berestycki et al. (2014) establishes for the obstacle
problem. We show in Section 5 that a dynamic programming principle holds
and that it implies that the minimal solution to the stochastic formulation
is a viscosity solution to the obstacle problem. Section 6 defines the exercise
boundary and the bubble. Section 7 contains comparative statics results
and in Section 8 we discuss the effect of the trading cost c on the volume of
trade and value of the bubble. Section 9 concludes. The Appendices contain
some supplementary materials and proofs.

2 Derivation of the model

2.1 Dividends and information

As in Scheinkman and Xiong (2003) we consider two sets of risk-neutral
investors A and B. For simplicity we will sometimes refer to an investor in
group C ∈ {A,B} as investor C. All investors discount future payoffs at a
continuously compounded rate r > 0. There is a single risky asset in a fixed
supply that we normalize to 1, which provides a flow of dividends up to a
maturity T > 0. We write Dt for the process of cumulative dividends and
since no dividends are paid after the maturity T , Dt = DT if t ≥ T.

Investors disagree on the future flow of dividends. We model this by
assuming that {Ω, PC ,F} is a probability space for C ∈ {A,B}, with PA ∼
PB. We assume that (WC ,WC,D) is a 2-dimensional Brownian motion in
{Ω, PC ,F}, such that under beliefs PC of investors in group C ∈ {A,B}
the process of dividends is given by the following pair of diffusions:

dDt = f̂Ct dt+ σDdW
C,D
t (2.1)

df̂Ct = −λ(f̂Ct − f̄)dt+ σf̂ [ςdWC,D +
√

1− ς2dWC
t ]. (2.2)

Here, 0 ≤ ς ≤ 1. When f̂At > f̂Bt the investors in group A are relatively
optimistic.

To complete the model we need to consider the views that investors in
group C ∈ {A,B} have of the evolution of beliefs of the investors in the
complementary group. We assume that investors in both groups know the
current value of f̂At and f̂Bt . We write Xs = f̂Bs − f̂As . We assume that all
investors forecast that X satisfies:

dXs = −ρXsds+ σdWs (2.3)
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for t ≤ s ≤ T, W is a Brownian motion from the point of view of both
group of investors, and the future (past) increments to W are independent
of the past (future) increments to WC,D and WC for C ∈ {A,B}. Assuming
that investors agree on the current value of the difference in beliefs and on
evolution of differences in beliefs amounts to assuming that investors in one
group know the model used by investors in the other group and agree to
disagree. The independence of W on past values of the other Brownian will
allow us to treat X as a state variable.

Scheinkman and Xiong (2003) derive a particular version of the system
of equations (2.1)-(2.3), that satisfy the independence hypothesis on W, by
assuming that investors observe two signals sA and sB that are correlated
with the drift of dividends and that the different groups exaggerate the
informativeness of the different signal. The degree by which investors in
group C exaggerates the informativeness of signal sC is characterized by a
parameter φ ≥ 0. In Scheinkman and Xiong (2003) ρ > λ ≥ 0, and σ > 0
if φ > 0. As φ → 0 investors differences of opinion simply reflect their
initial priors, ρ → λ and σ → 0. Here we opt to go directly to the general
model described by (2.1)-(2.3) and concentrate in deriving its implications
for finitely lived assets.

In what follows we will assume

Assumption 2.1 σ > 0, ρ > 0 and ρ > λ > −r

Since σ > 0, differences in beliefs are volatile and may change sign. The
assumption ρ ≥ λ means that differences in beliefs relax towards the origin
faster than the drift of dividends relaxes towards f̄ . Although we are mostly
interested in the case λ > 0, it suffices to assume that λ+ r > 0.7

We will write Gt, 0 ≤ t ≤ T for the completed filtration generated by the
vector Z = (D, f̂A, X), or equivalently Z̃ = (D, f̂B, X). In turn this filtra-
tion can be viewed as the completed filtration generated by the initial condi-
tions Z0 and the triple (WA,D,WA,W ) (or equivalently (WB,D,WB,W )).
Since (D, f̂A, X) is Markov if EC [h] exists and s ≥ t,

ECt [h(Zs)] := EC [h(Zs)|Gt] = EC [h(Zs)|Zt] .
Notice that equation (2.2) implies:

ECt [

∫ T

t
e−r(u−t)f̂Cu du | f̂Ct = y] = (2.4)

α(T − t, r)f̄ + α(T − t, r + λ)(y − f̄),

7The condition λ+r > 0 is necessary for the existence of an equilibrium of the associated
stationary problem (see Scheinkman and Xiong (2003)).
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where

α(t, µ) =
1− e−tµ

µ
.

2.2 Trading

The price of the asset is quoted ex-dividend, therefore the value of the asset
after maturity T is zero.8 We call pAt the maximum price an investor in group
A is willing to pay for the asset at time t. Since there are no dividends at
any time after T, pAT = 0. We assume a large number of investors in each
group bidding for the fixed asset supply, so it is natural to also assume that
if an investor in A buys the asset at t he must pay pAt . The buyer will receive
the dividend of the asset from t up to a time τ, t < τ < T, at which she sells
the asset. We assume that there is a fixed cost c ≥ 0 for any transaction.
This means that if investor A pays at t the price pAt then the investor who
sells receives the amount

(pAt − c).

A buyer of the asset may also hold the asset to maturity, in which case
she would receive the flow of dividends from time t to time T, and not incur
the fee c at maturity. Let τ be a stopping time of the filtration {G}. Write
τ ≥ t if a stopping time τ satisfies t ≤ τ(ω) ≤ T. Since every agent is risk-
neutral and discounts the future at rate r, the maximum price that that an
investor in group A is willing to pay at time t < T given the maximum price
process of B agents pBs , s ≥ t is:9

pAt = sup
τ≥t

EA
{
e−r(τ−t)(pBτ − c1{τ<T}) +

∫ τ

t
e−r(u−t)dDu|Gt

}
(2.5)

and similarly

pBt = sup
τ≥t

EB
{
e−r(τ−t)(pAτ − c1{τ<T}) +

∫ τ

t
e−r(u−t)dDu|Gt

}
(2.6)

with pAT = pBT = 0.
An equilibrium is thus a pair of processes (pAt , p

B
t ) with pAT = pBT = 0,

that satisfies equations (2.5) and (2.6).

8The assumption that the value of the asset at the terminal date is zero is not essential,
what is needed is that at maturity the asset’s value is common knowledge

9Here and in what follows the supremum over stopping times must be interpreted as
an essential supremum, that is the smallest random variable that dominates a family of
random variables (e.g. Karatzas and Shreve (1998), Appendix A).
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It is natural to postulate that in our Markov environment there exists
functions pC , with

pAt = pA(Xt, f̂
A
t , t)) (resp. pBt = pB(−Xt, f̂

B
t , t))

We also guess a particular form for the functions pC :

pC(x, y, t) = ECt [

∫ T

t
e−r(u−t)f̂Cu du|f̂Ct = y] + q(x, t) (2.7)

where q ≥ 0 and non-decreasing in the difference of opinions. The first
term on the right hand side of this expression measures the expected future
dividends discounted at rate r and would be the price of the asset in a world
with homogeneous expectations or when shorting is costless. Also since,
pC(x, y, T ) = 0, q(x, T ) = 0.

To derive an equation for q, we first observe that

pA(Xt, f̂
A
t , t) =

sup
τ≥t

EA
{
e−r(τ−t)(pB(−Xτ , f̂

A
τ +Xτ , τ)− c1{τ<T}) +

∫ τ

t
e−r(u−t)dDu|Gt

}
=

sup
τ≥t

EA
{
e−r(τ−t)(pB(−Xτ , f̂

A
τ +Xτ , τ)− c1{τ<T}) +

∫ τ

t
e−r(u−t)f̂Au du|Gt

}
Here the last equality follows from the Law of Iterated Expectations and
equation (2.1).

Using equations (2.4) and (2.7) we may write

pA(Xt, f̂
A
t , t) =

sup
τ≥t

EA
{
e−r(τ−t)(pA(−Xτ , f̂

A
τ , τ) + α(T − τ, λ+ r)Xτ − c1{τ<T}) +∫ τ

t
e−r(u−t)f̂Au du | Gt

}
(2.8)

The Law of Iterated Expectations extended to stopping times guarantees
that for any τ ≥ t

EA
[∫ τ

t
e−r(u−t)f̂Au du+ EA(

∫ T

τ
e−r(u−t)f̂Au du | Gτ ) | Gt

]
=

EA
[
EA(

∫ T

t
e−r(u−t)f̂Au du | Gτ ) | Gt

]
= EA

[∫ T

t
e−r(u−t)f̂Au du | Gt

]
(2.9)
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From expressions (2.7), (2.8) and (2.9), we obtain:

qA(Xt, t) = (2.10)

sup
τ≥t

EA
{
e−r(τ−t)

[
α(T − τ, λ+ r)Xτ + qA(−Xτ , τ)− c1{τ<T}

]
| Gt
}

qA(x, t) can be understood as the option value that A is willing to pay when
the difference of opinions f̂B−f̂A = x, and there is T−t to go. It satisfies an
equation that resembles that of an American option, except that the right
hand side involves again the option value.

Notice that the right hand side of (2.10) is potentially a function of ω
that is measurable with respect to Gt, while the left hand side only depends
on Xt. It is however natural to expect that the supremum on the right
hand side only depends on Xt. If we write {F} for the completed filtration
generated by X, since, conditional on Xt, the past realizations of D and f̂ do
not help predict the value of Xs for s > t, we may choose a stopping time τ of
the filtration {F} to solve the maximization problem (2.10).10 Furthermore
the Markov property of X guarantees that for each t, conditional on Xt the
supremum on the right hand side does not depend on the past values of Xu,
u < t.

Thus we may consider the problem: Find a function qA(x, t) such that
if Xs solves (2.3) with Xt = x

qA(x, t) =

sup
τ≥t

EA
{
e−r(τ−t)

[
α(T − τ, λ+ r)Xτ + qA(−Xτ , τ)− c1{τ<T}

]
|Xt = x} (2.11)

qA(x, T ) = 0 (2.12)

and a symmetric problem involving qB where −X replaces X in the right
hand side.

We call this set of equations the Stochastic Formulation of the option
value. Establishing a solution to this problem is the focus of the next section.

10A detailed argument for this and the previous assertion would follow a similar result
for discrete-time in Shiryaev (2007) (Theorem 21 on page 91), by discretizing the possible
stopping times.
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3 Direct solution of the stochastic formulation via
a fixed point argument

We establish in this section the existence of a solution to the fixed-point
problem described by (2.11) and(2.12).

If Xx,t
s , t ≤ s ≤ T solves (2.3) with Xx,t

t = x then

Xx,t
s = e−ρ(s−t)x+

∫ s

t
σe−ρ(s−u)dWu (3.13)

By symmetry, we need to consider the problem only from the perspective
of agents in group A and to lighten the notation we drop the superscript,
writing E instead of EA, and q instead of qA. In addition, we write α(u) in
place of

α(u, λ+ r) =
1− e−u(λ+r)

λ+ r

and set α(u) = 0 for u < 0.

3.1 Fixed point problem

Due to the boundary condition and the non-negativity of q we can restrict
the search of solutions to the following set of functions:

H = {h : R× (0, T ]→ [0,+∞) with h(x, T ) = 0} .

For each h ∈ H we define:

F[h](x, t) = (3.14)

sup
τ≥t

E
{
e−r(τ−t)

[
h(−Xτ , τ) + α(T − τ)Xτ − c1{τ<T}

]
|Xt = x

}
,

provided the right hand side is well defined. This is insured whenever the
process

Y h
s = e−r(T−s)

[
h (−Xs, s) + α (T − s)Xs − c1{s<T}

]
is right-continuous. Indeed, if we write

Zht = sup
τ≥t

E
[
Y h(τ) |Xt

]
,

where the maximization is taken over all stopping times of the filtration
{F}, results in Appendix D in Karatzas and Shreve (1998) show that if Y h
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is right-continuous, Zh is a super-martingale and that there exists a super-
martingale Z̃h, which is a cadlag modification of Zh, that is Z̃ht = Zht a.s.
for each t ∈ [0, T ].

Solving the equations implied by (2.11) and(2.12) in H is equivalent to
finding a fixed point.

F[h] = h (3.15)

The map F is obviously monotone. If h1 ≤ h2 and F[h1] and F[h2] are
well defined, then F[h1] ≤ F[h2]. We will show the existence of a subset of
H where F is well defined and that is left invariant by F. This will allow us
to apply a monotone fixed point argument to insure the existence of a fixed
point.

Write

S1 = {h ∈ H : If x ≤ y, 0 ≤ h(y, t)− h(x, t) ≤ (y − x)α(T − t)} .

For a given continuous function η(x, t) > 0 let

Sη2 = {h ∈ H : If s > 0, h(x, t)− h(x, t+ s) ≤ η(x, t)(α(T − t)− α(T − t− s))} ,
Sη3 = {h ∈ H : If s > 0,−η(−x, t)(α(T − t)− α(T − t− s)) ≤ h(x, t)− h(x, t+ s)} .

Lemma 3.1 Assume F[h] is well defined and write g = F [h]. (a) If h ∈ S1

then g ∈ S1. (b) Set η(x, t) = x
2 + eν(T−t)(1 + x2) with ν > 0 large enough.

If h ∈ Sη2 then g ∈ Sη2 , and if h ∈ Sη3 then g ∈ Sη3 .

Proof: Preliminary note: Since F[·](x, t) only depends on the distribution
of Xx,t

· , we sometimes replace Xt+r,x
s+r by Xt,x

s , for r ≥ 0.
If h ≥ 0 then g ≥ 0, since τ = T is always a feasible choice. Furthermore,

since h(·, T ) ≡ 0, g(x, T ) = 0 for each x. Thus if h ∈ H then g ∈ H.
(a) Suppose that for x ≤ y, 0 ≤ h(y, t)−h(x, t) ≤ (y−x)α(T − t). Then,

g(y, t)− g(x, t) ≤

sup
τ≥t

E
[
e−r(τ−t)

(
h(−Xy,t

τ , τ)− h(−Xx,t
τ , τ) + α(T − τ)(Xy,t

τ −Xx,t
τ )
)]
≤

sup
τ≥t

E
[
e−r(τ−t)α(T − τ)e−ρ(τ−t)(y − x)

]
≤

α(T − t)(y − x).

Here the second inequality follows from −Xy,t
τ ≤ −Xx,t

τ and monotonic-
ity of h, which also yields g(y, t) − g(x, t) ≥ 0. The third inequality holds
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because each term under the conditional expectation decreases with τ. Fur-
thermore,

g(y, t)− g(x, t) ≥

inf
τ≥t

E
[
e−r(τ−t)

(
h(−Xy,t

τ )− h(−Xx,t
τ ) + α(T − τ)(Xy,t

τ −Xx,t
τ )
)]

≥ inf
τ≥t

E
[
e−r(τ−t)

(
α(T − τ)(Xx,t

τ −Xy,t
τ ) + α(T − τ)(Xy,t

τ −Xx,t
τ )
)]

= 0.

(b: Part I) We first consider an h ∈ Sη2 . Fix s > 0 and write ∆α(t) =
α(T − t)−α(T − t−s). If τ ≥ t is a stopping time, set τ(s) = min{τ +s, T}.
Then,

g(x, t)− g(x, t+ s)

≤ sup
τ≥t

E
[
e−r(τ−t)

(
h(−Xx,t

τ , τ)− h(−Xx,t+s
τ(s) τ(s)) +Xx,t

τ ∆α(τ)− c1{τ<T} + c1{τ<T−s}

)]
≤ sup

τ≥t
E
[
e−r(τ−t)

(
h(−Xx,t

τ , τ)− h(−Xx,t
τ , τ(s)) +Xx,t

τ ∆α(τ)
)]

≤ sup
τ≥t

E
[
e−r(τ−t)

(
η(−Xx,t

τ , τ)(α(T − τ)− α(T − τ(s)) +Xx,t
τ ∆α(τ)

)]
= sup

τ≥t
E
[
e−r(τ−t)

(
η(−Xx,t

τ , τ)∆α(τ) +Xx,t
τ ∆α(τ)

)]
Here the first inequality follows since if τ(s) = T, h(·, τ(s)) = 0 and

α(T − τ(s)) = α(T − τ − s) = 0 (recall that we set α(u) = 0 for u < 0.) The
third inequality follows because h ∈ Sη2 , and the last equality holds again
because when τ(s) = T, α(T − τ(s)) = α(T − τ − s) = 0. We also replaced
Xx,t+s
τ(s) by Xx,t

τ , where appropriate (see note above).
Since

η(x, t) =
x

2
+ eν(T−t)(1 + x2), ν > 0.

η(−x, t) + x = η(x, t) > 0. Since ∆α > 0, and the exponential term
e−r(τ−t) ≤ 1, we can get the bound:

g(x, t)− g(x, t+ s) ≤ Eη(Xx,t
τ , τ)∆α(τ)

Hence it suffices to show that η(Xt, t)∆α(t) is a super-martingale to
insure that

g(x, t)− g(x, t+ s) ≤ η(x, t)(α(T − t)− α(T − t− s)) (3.16)
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If t < T − s, then ∆α(t) = κe(λ+r)t where κ = e−(λ+r)T e(λ+r)s−1
λ+r . Ito’s

lemma guarantees that the drift of η(Xt, t)∆α(t) is

(λ+r−ρ)
x

2
− ρ

2
−2ρeν(T−t)x2 +σ2eν(T−t) +(λ+r−ν)eν(T−t)(1+x2), (3.17)

and if expression (3.17) is non-positive then η(Xt, t)∆α(t) is a super-martingale.
Note that the 1 ≤ eν(T−t) ≤ eνT . For large values of |x|, the quadratic terms
dominates, which has coefficient (λ + r)eν(T−t) − νeν(T−t) < 0 as long as
ν > λ+ r. However for a bounded set of |x|′s one can always choose ν large
enough such that (3.17) holds. Hence, we can choose ν large enough to make
η(Xt, t)e

(λ+r)t a supermartingale as desired.
When t ≥ T − s, then ∆α(t) = α(T − t) is decreasing, and so it is

even easier to obtain a supermartingale. The same ν as above works, and
so we have established the existence of a ν such that η(Xt, t)∆α(t) is a
super-martingale.

(b: Part II) To show that if h ∈ Sη̃3 then

g(x, t+ s)− g(x, t) ≥ −η(−x, t)(α(T − t)− α(T − t− s)), (3.18)

consider a stopping time τ ≥ t+ s. If τ < T , set τ(s) = τ − s. If τ ≥ T set
τ(s) = T. Note that 1{τ(s)<T} ≡ 1{τ<T}.

g(x, t+ s)− g(x, t)

≤ sup
τ≥t+s

E
[
e−r(τ−t−s)

(
h(−Xx,t+s

τ , τ)− h(−Xx,t
τ(s), τ(s)) +Xx,t

τ(s) (α(T − τ)− α(T − τ(s)))
)]

≤ sup
τ≥t+s

E
[
e−r(τ−t−s)

(
η(Xx,t

τ(s), τ(s))−Xx,t
τ(s)

)
(α(T − τ(s))− α(T − τ))

]
= sup

τ≥t+s
E
[
e−r(τ−t−s)

(
η(−Xx,t

τ(s), τ(s))
)

(α(T − τ(s))− α(T − τ))
]

The first inequality follows from the fact that if τ = T then h(·, τ) =
α(T−τ) = 0. The second inequality holds because h ∈ Sη3 . We again replaced
Xx,t+s
τ by Xx,t

τ(s), where appropriate (see note above).

Thus it again suffices to choose ν such that η(−Xx,t
τ(s), τ(s))∆α(τ(s)) is

a supermartingale. But since η(−Xx,t
τ , τ) = η(X−x,tτ , τ) (in law), the sub-

martingale property of η(−Xx,t
τ(s), τ(s))∆α(τ(s)) for ν large follows immedi-

ately from the result in Part I above.
Choose the function η as in Lemma 3.1, ν large enough. Write

S = S1

⋂
Sη2
⋂
Sη2 .
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Every function h ∈ S is locally Lipschitz continuous. In addition, for each
h ∈ S the process Y h is right continuous since,

lim
s↘0

[h(−Xt+s, t+ s)− h(−Xt, t)] ≤

lim
s↘0

[(α(T − t− s)|Xt+s −Xt|+ |h(−Xt, t+ s)− h(−Xt, t)|] = 0,

because h ∈ S1
⋂
Sη2
⋂
Sη3 and X is continuous. Thus F[h] is well defined.

Lemma 3.1 guarantees that for every h ∈ S, F[h] ∈ S. The following result
will be used in Section 5:

Lemma 3.2 (i) For any compact K ⊂ R, there exists a constant bK such
that for any h ∈ S, x, y ∈ K and s, t ∈ [0, T ]

h(x, t)− h(y, s) ≤ bK (|x− y|+ |t− s|) .

(ii) There exists constant CT such that for any (x, t) ∈ R× [0, T ]

0 ≤ h(x, t) ≤ CT (1 + max{0, x})

Proof: (i) is immediate. To prove (ii), notice that since h ∈ S1,

h(x, t) ≤ h(0, t) + max{0, x} α(T − t) ≤ h(0, t) +
max{0, x}
λ+ r

.

Furthermore, from (i)

h(0, t) = h(0, t)− h(0, T ) ≤ b0T

Thus we get

0 ≤ h(x, t) ≤ b0T +
max{0, x}
λ+ r

.

3.2 Existence of a minimal solution to the fixed point

In this subsection we prove the following result:

Theorem 3.3 There exists q ∈ S which is a fixed point for F. If h ∈ H is
any other fixed point of F then q ≤ h, that is q is minimal.

A supersolution to the fixed point problem (3.15) is a h̄ ∈ H such that
h̄ ≥ F[h̄]. Our first result is:

Proposition 3.4 There exists a supersolution to the fixed point problem
(3.15).
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Proof: As in Lemma 3.1 we set η(x, t) = x
2 + eν(T−t)(1 +x2), ν > 0. Let

h(x, t) = η(x, t)α(T − t) + 1{t<T}c.

Since e(λ+r)s is increasing in s the choice of ν in (b: Part I) in the proof of
Lemma 3.1 guarantees that η(Xt, t) is a super-martingale. Thus

(F(h)) (x, t) = sup
τ≥t

E
{
e−r(τ−t)

[
η(−Xx,t

τ , τ)α(T − τ) +Xx,t
τ α(T − τ)

]}
=

sup
τ≥t

E
{
e−r(τ−t)η(Xx,t

τ , τ)α(T − τ)
}

= η(x, t)α(T − t) = h(x, t)− 1{t<T}c

Remark 3.5 In fact there exists a continuous super-solution q̄. Set

q̄(x, t) = η(x, t)α(T − t).

q̄ is continuous and by monotonicity,

F[q̄] ≤ F[h] = h− 1{τ<T}c = q̄.

In particular this shows that when c = 0 there exists a continuum (indexed
by ν) of continuous solutions to the fixed point problem.

Proof of Theorem 3.3: We adapt an argument used in the proof of
Theorem 1 in Chen and Kohn (2011). We construct a sequence of functions:

q0 = 0,

qn+1 := F[qn]

Since q0 ∈ S, qn ∈ S for every n, and thus F[qn] is well defined. Fur-
thermore q1 ≥ 0 and thus monotonicity of F guarantees that qn ≤ qn+1.
Furthermore, 0 ≤ h̄ and monotonicity implies qn ≤ Fq̄ ≤ h̄. Thus

q(x, t) := lim
n→∞

qn = sup
n
qn

is well defined and, since S is closed under pointwise convergence, q ∈ S.
Then

q(x, t) = supn qn+1(x, t) = supn F[qn](x, t)

= supn supτ≥tE
[
e−r(τ−t)

(
qn(−Xτ , τ) + α(T − τ)Xτ − c1{τ<T}

)
|Xt = x

]
= supτ≥t supn E

[
e−r(τ−t)

(
qn(−Xτ , τ) + α(T − τ)Xτ − c1{τ<T}

)
|Xt = x

]
= supτ≥t E

[
e−r(τ−t)

(
supn qn(−Xτ , τ) + α(T − τ)Xτ − c1{τ<T}

)
|Xt = x

]
= supτ≥t E

[
e−r(τ−t)

(
q(−Xτ , τ) + α(T − τ)Xτ − c1{τ<T}

)
|Xt = x

]
= F[q](x, t).
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Here we use the fact that we can always interchange the order of the
supremums and that the monotone convergence theorem justifies interchang-
ing supremum and conditional expectation.

In addition if h ∈ H is any other fixed point of F, monotonicity of this
operator guarantees that qn ≤ h and hence q ≤ h.

4 Obstacle problem and viscosity solutions

We start with a heuristic derivation of a non-local obstacle problem that
one should expect to be satisfied by a solution to the fixed point problem
(3.15) and define the viscosity solutions to this obstacle problem.

If it is optimal to exercise the option to sell at t < T when Xt = x then

q(x, t) = α(T − t)x+ q(−x, t)− c.

If t < T and there is no exercise, i.e. in the continuation region, we have

q(x, t) > α(T − t)x+ q(−x, t)− c

In the continuation region, the dynamic programming principle (at least
formally) yields:

−qt +
1

2
σ2qxx − ρxqx − rq = 0.

In the stopping region, we get

−qt +
1

2
σ2qxx − ρxqx − rq ≤ 0

Therefore, if we write the option value as a function of time to expiration,
that is

u(t, x) = q(T − t, x), and writing

ψ(x, t) := xα(t)− c,

we get

min

{
ut − (

1

2
σ2uxx − ρxux − ru), u(x, t)− (u(−x, t) + ψ(x, t))

}
= 0.

Let

Mu = −1

2
σ2uxx + ρxux + ru and Lu = ut +Mu
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and L is thus a (forward) parabolic operator. Since u(x, 0) = q(x, T ) = 0,
we obtain the following obstacle problem:{

u(x, 0) = 0
min (Lu, u(x, t)− (u(−x, t) + ψ(x, t))) = 0

(4.19)

Scheinkman and Xiong (2003) showed that in the case of an infinite horizon,
the value of the resale option is given by a solution to the following stationary

problem, with ψ∞(x) = ψ(x,+∞) =
x

r + λ
− c

min (Mu∞, u∞(x)− u∞(−x)− ψ∞(x)) = 0 for x ∈ R (4.20)

Obstacle problems such as (4.19) do not typically have classical solutions
in the sense of a smooth function u that satisfies the equation. A partic-
ularly fruitful weaker notion of solution is that of a viscosity solution. To
define a viscosity solution one starts with viscosity subsolutions and viscosity
supersolutions. Although the definition given in Appendix A is necessarily
technical to allow for non smooth functions, roughly a subsolution to (4.19)
is a function u such that:{

u(x, 0) ≤ 0
min (Lu, u(x, t)− (u(−x, t) + ψ(x, t))) ≤ 0

Similarly a supersolution can be thought as a function u such that{
u(x, 0) ≥ 0
min (Lu, u(x, t)− (u(−x, t) + ψ(x, t))) ≥ 0

A viscosity solution is essentially a function u that is simultaneously a
viscosity subsolution and a viscosity supersolution. See Appendix A for a
precise definition. The concept of viscosity allows us to make sense of non-
smooth solution u to the obstacle problem (4.19). It is well known that
the value function associated with stochastic control problems is often non-
smooth, that is not necessarily C1,2. However it is often possible to show
that the value function is a viscosity solution of the associated PDE.11 In
Section 5 we show that a similar result holds for our equilibrium problem
- the equilibrium option value is an appropriate viscosity solution to the
obstacle problem (4.19).

An important tool in the study of viscosity solutions is the comparison
principle that states that if u is a subsolution and v a supersolution satisfying

11See e.g. Theorem VIIII.5.1 in Fleming and Soner (1993), Zariphopoulou (1994) or
Bouchard (2007).
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some growth conditions then u ≤ v. The comparison principle is also an ideal
tool for comparing solutions. Let u(γ) be a family of solutions corresponding
to values of a parameter γ. Suppose we show that if γ < γ′ then u(γ)
is a subsolution for the obstacle problem when the parameter value is γ′.
Since u(γ′) is necessarily a supersolution for the obstacle problem for the
parameter value γ′, the comparison principle assures us that u(γ) ≤ u(γ′).
We exploit this idea repeatedly in Section 7.

Berestycki et al. (2014) establishes the following comparison principle.

Theorem 4.1 If c > 0 and u (resp. v) is a subsolution (resp. supersolu-
tion) of (4.19 ) on R× [0, T ) for some T > 0, satisfying for some constant
CT > 0

u(x, t) ≤ CT (1 + max(0, x)) and v(x, t) ≥ −CT (1 + max(0, x))

for all (x, t) ∈ R× [0, T ). Then u ≤ v on R× [0, T ).

The formal proof is in Berestycki et al. (2014). A heuristic proof of this
result follows: let u be a subsolution and v a supersolution and assume they
are smooth and that

M = sup(u− v) = (u− v)(x0, t0) > 0.

Then at the point (x0, t0):
i)Lu ≤ 0

or
ii)u(x0, t0)− u(−x0, t0)− ψ(x0, t0) ≤ 0

(4.21)


Lv ≥ 0

and
v(x0, t0)− v(−x0, t0)− ψ(x0, t0) ≥ 0

(4.22)

i) If Lu ≤ 0 then using Lv ≥ 0, we obtain

0 ≥ Lu− Lv = −1

2
σ2(u− v)xx + r(u− v) > 0,

a contradiction.
ii) If, on the other hand, Lu > 0 then

u(x0, t0)− u(−x0, t0)− ψ(x0, t0) ≤ 0 (4.23)
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Subtracting from (4.23) the second line of (4.22), we get

M = (u− v)(x0, t0) ≤ (u− v)(−x0, t0) ≤M

Again case i) for (−x0, t0) is straightforward, and it remains case ii) for
(−x0, t0), i.e.

u(−x0, t0)− u(x0, t0)− ψ(−x0, t0) ≤ 0

Summing this inequality with (4.23), we get:

0 ≥ −ψ(x0, t0)− ψ(−x0, t0) = 2c

a contradiction to c > 0.12

Using the comparison principle, Berestycki et al. (2014) establish an ex-
istence theorem for viscosity solutions of the obstacle problem (4.19). More
precisely they establish the following theorem:

Theorem 4.2 If c > 0, there exists a unique viscosity solution u of (4.19)
satisfying

|u−max(0, ψ)| ≤ C on R× [0,+∞).

In Section 5 we will establish that the (minimal) equilibrium for the price
of the resale option satisfies q(x, t) = u(x, T − t) that is, except for a change
in the time direction the minimal equilibrium price of the option is identical
to the viscosity solution given in Theorem 4.2.

5 The dynamic programming principle and viscos-
ity solutions

In this section we state the dynamic programming principle and the results
connecting the solution to the fixed point problem (3.15) with the viscosity
solution defined in Theorem 4.2. All proofs are left to Appendix B.

Theorem 5.1 Suppose h ∈ H is a solution of F[h] = h. Then, for any
stopping time θ ≥ t

h(x, t) = sup
τ≥t

E
{
e−r(θ−t)h(Xx,t

θ , θ)1{θ≤τ}+

e−r(τ−t)
[
h(−Xx,t

τ , τ) + α(T − τ)Xx,t
τ − c1{τ<T}

]
1{θ>τ}

}
(5.24)

12Berestycki et al. (2014) shows that the comparison theorem is false for c = 0.
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One way to get intuition for why Theorem 5.1 holds is to imagine the
following modified optimization problem. The buyer of the asset at t is free
to sell the asset to any other agent at any stopping time τ ≥ t. In that
case, she must pay the trading cost c per unit of the asset that she sells. In
addition, if a stopping time θ occurs while she still owns the asset, she is
forced to sell to another agent of her own group, but is dispensed from paying
the cost c. Theorem 5.24 states that the reservation price in this modified
optimization problem is exactly the reservation price in the original problem.
The reason why this result holds is that selling to someone in the same group
yields exactly zero gains from trade.

The dynamic programming principle implies that u(x, t) := q(x, T − t)
solves the obstacle problem given by the system of equations (4.19). More
precisely, we have:

Theorem 5.2 (i) Let h ∈ H be any solution of F[h] = h. Then (x, t) 7→
h(x, T − t) is a viscosity solution of

min (Lu, u(x, t)− (u(−x, t) + ψ(x, t))) = 0 (5.25)

which satisfies for every x, h∗(x, T ) := lim inf(y,t)→(x,T ) h(y, t) ≥ 0.
(ii) If moreover h satisfies

h∗(x, T ) := lim sup
(y,t)→(x,T )

h(y, t) ≤ 0 for all x ∈ R

then we have h(x, T − t) = u(x, t) where u is a viscosity solution of (4.19).

As a consequence of this result and Lemma 3.2, we have

Corollary 5.3 The minimal solution q of the stochastic formulation defined
in Theorem 3.3 satisfies:

q(x, T − t) = u(x, t)

where u is the unique viscosity solution of (4.19) that satisfies |u−max(0, ψ)| ≤
C on R× [0,+∞).

Remark 5.4 To establish this Corollary it would suffice to prove Theorem
5.1, for continuous functions h. However by proving the general result for
h ∈ H we have actually shown that the minimal solution to the fixed-point
problem q is the unique equilibrium option value among all functions h ∈ H
that satisfy the growth condition and such that h∗(x, T ) ≤ 0.
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6 Exercise boundary

Berestycki et al. (2014) shows that there exists a function a : (0,+∞) →
[0,+∞), a ∈ C∞(0,+∞), such that for all t > 0:

{x ≥ 0 : u(x, t)− u(−x, t) = ψ(x, t)} = {x ≥ a(t)} ⊂
{
x ≥ c

α(T − t)

}
Since we showed that q(·, t) = u(·, T−t) the function k(t) = a(T−t) describes
the exercise boundary. Agents in group A sell to group B agents at time t
if X(t) = k(t). Symmetrically, agents in group B sell at t if X(t) = −k(t).
Since α(T − t)k(t) ≥ c, agents in group A sell only when the expected value
of discounted future differences in dividends exceed the fixed cost c. This
result is intuitive once one considers the gains from trade that occur in a
trade. If an agent in group A sells to an agent in group B at t when the
difference of opinions is x ≥ 0, the gains from trade are given by:

xα(T − t) + q(−x, t)− q(x, t) ≤ xα(T − t),

since q is monotone in x. Since gains from trade must exceed the transaction
cost c if a trade is to occur, α(T − t)k(t) ≥ c.

If a member of the B group buys the asset at t, she would pay a price that
reflects her valuation of future dividends plus the value of the resale option
she acquires, q(−k(t), t). Symmetrically, if a member of the A group buys the
asset at t, he would pay a price that reflects his valuation of future dividends
plus the value of the resale option he acquires, q(−k(t), t). Thus q(−k(t), t)
is in any case the speculative component of the buyer’s reservation price. If
a trade occurs at t we will define (the size of) a bubble as the speculative
component at that trading time:

b(t) := q(−k(t), t) ≡ u(−a(T − t), T − t) (6.26)

Notice that at a trading time the buyer is necessarily more optimistic
than the seller, that is k > 0, but we do not include the difference in opinions
as part of the bubble. In this sense our definition of a bubble is conservative.

7 Comparative statics

The monotonicity argument used in establishing the existence of the equi-
librium option value q yields results on monotonicity of q and on the depen-
dency of q on parameters:

Lemma 7.1 The function q is increasing13 and convex in x. Furthermore

13In the results in this Section increasing should be read as non-decreasing etc...
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q is decreasing in r, λ and c, and increasing in σ.

Proof: Since q ∈ S the monotonicity with respect to x follows. Further-
more it is easy to check that the operator F preserves functions that are
convex in x and since q0 ≡ 0, q is convex. Monotonicity with respect to r,
λ and c, follows from observing that the monotone map F is decreasing in r
and λ (because of the expression for ]α) and in c. Finally if we write Xσ,x,t

s

for the solution indexed by σ and σ > σ′, then Xσ,x,t
s is a mean-preserving

spread of Xσ′,x,t
s . Thus for any convex h, Fh must increase with σ. Since

every qn = F[qn−1] is convex and F is increasing, q must increase with σ.
Monotonicity with respect to t and the monotonicity properties of the

exercise boundary are not immediate consequences of properties of the op-
erator F. However Berestycki et al. (2014) use comparison principles to es-
tablish monotonicity properties of the viscosity solution u and the following
result is a simple translation of Theorems 6.1 and 7.2 in Berestycki et al.
(2014) using the relationship between u and q, and between k and a.

Lemma 7.2 The minimal solution to the fixed point problem q is increasing
in t. The exercise boundary k satisfies: (i) k′(t) ≥ 0. (ii) A decrease in ρ
increases k. (iii) An increase in c, λ, r or σ increases k. (iv) Let k(t, c) be
the exercise boundary as a function of time t and the transaction cost c. Set

k̄(t) =

(
3σ2

2(1 + (ρ− λ)α(T − t))

)1/3

.

Then t < T

k̄(t) ≤ k(t, c)

c1/3
→ k̄(t)

uniformly in compact subsets of [0, T ), as c→ 0.

The occurrence of a trade at t depends on the particular realization of the
Brownian W. Nevertheless, we can derive the following comparative statics
results concerning b(t) as immediate consequences of Lemmas 7.1 and 7.2.

Proposition 7.3 (i) The function b(t) is decreasing in t. (ii) A decrease in
r or c increases b.

The results in (ii) formalize the intuition that low interest rates and low
transaction costs fuel bubbles. As the transaction cost c → 0 the exercise
boundary k(t, c)→ 0, for t < T. That is as c→ 0 trading takes place when
difference of opinions and hence gains from trade are very small. Nonetheless
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the speculative value increases as c decreases. The intuition is that as c→ 0
the number of future trades becomes very large so even though the gain
from trade at each time is close to zero, the accumulation of many future
gains from trade yield a maximum value for the resale option.

Lemmas 7.1 and 7.2 state that an increase in σ increases the value of
the option to resell and the value of the exercise boundary, what leaves the
effect on b indeterminate. This difficulty can be surmounted by studying
the obstacle problem that is solved by a rescaled version of the function u

ūσ(y, t) = u(σy, t),

and the corresponding rescaled exercise boundary

āσ(t) =
a(t)

σ
.

Applications of comparison principles to this rescaled problems yield:

Proposition 7.4 An increase in σ increases b.

Proof: See Appendix C.
It is well documented that bubbles occur in times of technical or financial

innovations. It is reasonable to expect that during these times the volatility
of differences of opinion increases. Proposition 7.4 shows that in our model
bubbles do increase when difference in opinions are more volatile.

8 Effect of trading cost c ∼ 0 on the time to next
trade and the size of the bubble

The exercise boundary k(t, c) depends on the cost of transaction c and con-
verges to 0 as c→ 0, for any t < T. Thus, as c→ 0, one should expect trad-
ing volume in a given time interval to increase. In the infinite horizon case,
Scheinkman and Xiong (2003) showed numerically that a small increase in
trading costs near c = 0 affects much more the value of the exercise bound-
ary than the value of the bubble. Here we will present some computations
that help us understand this relationship. Notice that Lemma 7.2 guaran-
tees that near c = 0, k(t, c) ∼ c1/3k̄(t). As a consequence, we show formally
that the distribution of time between trades scales as c2/3. In particular the
elasticity of the median (or any quantile) time between trades with respect
to c is -2/3. Thus a 1% increase in c, caused perhaps by a “Tobin tax” on
transactions, would decrease the median time between trades by 2

3 of 1%, if
c is small.
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In contrast, the value of the bubble b is much less sensitive to the cost of
trading c. We provide a formal argument that the elasticity of b with respect
to c converges to 0 as c→ 0. When c is small, a 1% increase in c would have
a negligible effect on the size of the bubble. Thus a Tobin tax is much more
effective in reducing trade than in reducing bubbles.

Consider first the distribution of times between trades. This distribution
concerns the minimum time τ it takes to reach Xt+s = k(t + s, c) starting
from Xt = −k(t, c). Fix h > 0, ε > 0 and t > 0. The uniform convergence
guaranteed by Lemma 7.2 insures that for small c > 0, we have k̄(t+s)c1/3 ≤
k(t+ s, c) ≤ (k̄(t+ s) + ε)c1/3 for 0 ≤ s ≤ hc2/3. So, if we define τ(z) as the
first time we hit a curve z(t+ s), then:

τ(c1/3k̄(·)) ≤ τ(k(·, c)) ≤ τ((k̄(·) + ε)c1/3)

For small enough c, we have |k̄(t+s)− k̄(t)| < ε for s < hc2/3, and hence,
on the event that τ(k)− s < hc2/3, we can bound τ(k(·, c)) by:

τ1 := τ(k1c
1/3) ≤ τ(k(·, c)) ≤ τ(k2c

1/3) =: τ2

where k1(t+ s) := k̄(t)− ε, and k2(t+ s) := k̄(t) + 2ε are constant functions.
We will now approximate P (τi − t < hc2/3) for i = 1, 2, and show that

the approximations converge to each other as c and ε→ 0.
First we show that, in the limit, we may set ρ = 0. More precisely let

R be the first time after t that Xt+s = ±1. Then P (R < t + hc2/3) → 0
as c → 0. So, given any ε > 0 for small enough c, with probability at least
1− ε, |Xt+s| < 1 for s ≤ hc2/3, and hence the drift term in Xt+s has size at
most hc2/3ρ < εc1/3 for small c. So |Xt+s − σWt+s| < εc1/3 for s < hc2/3.

Recall that the time τ∗ it takes for a Brownian Motion σW to go from
level −a to level +b is given by:

P (τ∗ < s) =
1√
2π

∫ b+a
σ
√
s

− b+a
σ
√
s

e−x
2/2dx

Thus combining these approximation results, we get the bound:

P (τ1 − t < hc2/3) ≥ 1√
2π

∫ κ

−κ
e−x

2/2dx− ε

where

κ =
k(t, c)c−1/3 + k̄(t)− 2ε

σ
√
h

.
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In the definition of κ, k(t), cc−1/3 comes from the value of the initial location
(all other terms in numerator and denominator had a c1/3 term, so this gets
factored out). The k̄(t) − ε is from the definition of τ1 (and hence comes
from the fact that k̄ is continuous). A second −ε comes from the comparison
of Xt+s with σWt+s. Finally, the −ε after the integral comes from the fact
that this comparison might fail on a set of probability ε. But since ε > 0
was arbitrary, and k(t, c)c−1/3 → k̄(t) as c → 0, we can get the asymptotic
bound:

lim
c
P (τ1 − t < hc2/3) ≥ 1√

2π

∫ κ′

−κ′
e−x

2/2dx

where κ′ = 2k̄(t)

σ
√
h

as desired. The bound for τ2 follows the same argument,

and so the limit for τ follows.
The formal argument concerning the value of the bubble goes as fol-

lows. To make explicit the dependency on the trading cost c, set b(t, c) :=
q(−k(t, c), t, c). Thus formally:

d ln b

d ln c
=
c
(
−qx ∂k∂c + qc

)
q

=
−kqx d ln k

d ln c + cqc

q
.

Lemma 7.1 states that d ln k
d ln c = 2

3 and k ∼ 0 for c small. Since q ∈ S1, qx is
uniformly bounded and since q increases as c→ 0 we have that

lim
c→0

d ln b

d ln c
= lim

c→0

cqc
q
.

In Appendix D we show formally that qc = O(c−1/3) and thus that
limc→0

d ln b
d ln c = 0.

9 Concluding remarks

We have characterized the equilibrium value of the resale option on a finitely
lived asset, when investors agree to disagree. The model is capable of gen-
erating the correlations observed between bubbles and trading frenzies and
may be used to evaluate the impact of transaction taxes. The approach
combines a fixed-point problem that arises from a stochastic formulation -
whose solution uses martingale methods - with a PDE approach. The use
of this dual approach yields comparison of solution results that are not ob-
vious even in the stationary context of Scheinkman and Xiong (2003) where
analytical solutions to the value of the resale option are available.
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Missing are considerations of supply of the asset. It has been observed
that bubbles often come to an end because supply of the over-valued asset
increases.14 To consider the effect of supply would require introducing risk-
averse agents or limits to capital. In both cases we would have to increase
the dimensionality of the problem, what lies beyond the scope of this paper.

Appendix

A Viscosity solutions

The following definitions of viscosity solutions proposed by Barles and Perthame
(1987) are used in Berestycki et al. (2014):

Definition A.1 (Viscosity sub/super/solution of equation (4.19)) Let T ∈
(0,+∞].
(i) Viscosity sub/supersolution on R× (0, T )
A function u : R× [0, T )→ R is a viscosity subsolution (resp. supersolution)
of (4.19) on R × (0, T ), (that is, of the second equation in (4.19)), if u is
upper semi-continuous (resp. lower semi-continuous), and if for any func-
tion ϕ ∈ C2,1(R× (0, T )) and any point P0 = (x0, t0) ∈ R× (0, T ) such that
u(P0) = ϕ(P0) and

u ≤ ϕ on R× (0, T ) (resp. u ≥ ϕ on R× (0, T ))

then

min {(Lϕ)(x0, t0), u(x0, t0)− u(−x0, t0)− ψ(x0, t0)} ≤ 0,

(resp. min {(Lϕ)(x0, t0), u(x0, t0)− u(−x0, t0)− ψ(x0, t0)} ≥ 0).

(ii) Viscosity sub/supersolution on R× [0, T )
A function u : R× [0, T )→ R is a viscosity subsolution (resp. supersolution)
of (4.19) on R× [0, T ), (that is, of the initial value problem), if u is a vis-
cosity subsolution (resp. supersolution) of (4.19) on R× (0, T ) and satisfies
moreover u(x, 0) ≤ 0 (resp. u(x, 0) ≥ 0) for all x ∈ R.

(iii) Viscosity solution on R× [0, T )
A function u : R× [0, T )→ R is a viscosity solution of (4.19) on R× [0, T ),

14See Scheinkman (2014) Section 2.2 for examples and references.
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if and only if u∗ is a viscosity subsolution and u∗ is a viscosity supersolution
on R× [0, T ) where

u∗(x, t) = lim sup
(y,s)→(x,t)

u(y, s) and u∗(x, t) = lim inf
(y,s)→(x,t)

u(y, s).

B Dynamic programming principle and necessity
condition for the viscosity solution: Proof

Proof of Theorem 5.1 : The proof follows closely Bouchard (2007).
Step 1: preliminaries
Setting

Kx,t(s) := e−r(s−t)
[
h(−Xx,t

s , s) + α(T − σ)Xx,t
s − c1{s<T}

]
we can rewrite the condition F(h) = h as

h(x, t) = sup
τ≥t

E
{
Kx,t(τ)

}
From the flow property of stopping times:

Xx,t
s = X

Xx,t
θ ,θ

s for all s ∈ [θ, T ], P-a.s.

If θ ≤ s ≤ T , then

Kx,t(s) = e−r(s−t)
[
h(−XXx,t

θ ,θ
s , s) + α(T − s)XXx,t

θ ,θ
s − c1{s<T}

]
= e−r(θ−t)KXx,t(θ),θ(s)

This shows that

Kx,t(τ) = e−r(θ−t)KXx,t
θ ,θ(τ)1{θ≤τ} +Kx,t(τ)1{θ>τ}

Step 2: ≤ holds in (5.24)
Using the law of iterated expectantions, we get

E
{
Kx,t(τ)

}
= E

{
Kx,t(τ)1{θ>τ} + e−r(θ−t)1{θ≤τ}E

{
KXx,t

θ ,θ(τ) | (Xx,t
θ , θ)

}}
(2.27)

where we have used the fact that τ ≥ θ P-a.s. in the second expectation.
In particular

E
{
Kx,t(τ)

}
≤ E

{
Kx,t(τ)1{θ>τ} + e−r(θ−t)1{θ≤τ}h(Xx,t

θ , θ)
}

=

E
{
e−r(θ−t)h(Xx,t

θ , θ)1{θ≤τ} + e−r(τ−t)
[
h(−Xx,t

τ , τ) + α(T − τ)Xx,t
τ − c1{τ<T}

]
1{θ>τ}

}
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because for any fixed stopping time θ̄ ≥ t, {τ ≥ t}
⋂
{τ ≥ θ̄} = {τ ≥ θ̄}.

Taking the supremum on τ ≥ t gives the desired inequality.
Step 3: ≥ holds in (5.24)
Fix ε > 0. Then for any (y, s) ∈ R× (−∞, T ], there exists a stopping time
τ̃ε = τ̃ε(y, s) ≥ s such that

E {Ky,s(τ̃ε)} ≥ −ε+ h(y, s)

Choose a stopping time θ ≥ t, and set Then we set

τε = τ̃ε(X
x,t(θ), θ)

which is also a stopping time satisfying θ ≤ τε, P-a.s. This implies that

E
{
KXx,t

θ ,θ(τε) | (Xx,t
θ , θ)

}
≥ −ε+ h(Xx,t

θ , θ)

Given a stopping time τ ≥ t, we now consider

τ̄ = τ1{θ>τ} + τε1{θ≤τ}

which is also stopping time. Then (2.27) implies

E
{
Kx,t(τ)

}
≥ E

{
Kx,t(τ)1{θ>τ} + e−r(θ−t)1{θ≤τ}

{
−ε+ h(Xx,t

θ , θ)
}}

≥ −ε+ E
{
Kx,t(τ)1{θ>τ} + e−r(θ−t)1{θ≤τ}h(Xx,t

θ , θ)
}

Taking the supremum over τ ≥ t,

h(x, t) ≥ −ε+

sup
τ≥t

E
{
e−r(θ−t)h(Xx,t

θ , θ)1{θ≤τ} + e−r(τ−t)
[
h(−Xx,t

τ , τ) + α(T − τ)Xx,t
τ − c1{τ<T}

]
1{θ>τ}

}
and because ε > 0 is arbitrary, we obtain the desired inequality.

Proof of Theorem 5.2.: Again we follow closely Bouchard (2007).
Let

v(x, t) := h(x, T − t).

and recall that h ≥ 0, and thus v∗(x, 0) = h∗(x, T ) ≥ 0, which shows
that v satisfies the initial condition v(x, 0) = 0 in the viscosity sense for
supersolutions.

29



We now want to show that v is a viscosity solution of (5.25). For (x, t) ∈
R× (−∞, T ), since τ = t is always a possible choice,

h(x, t) ≥ h(−x, t) + α(T − t)x− c

That is,
v(x, t)− v(−x, t)− ψ(x, t) ≥ 0 (2.28)

Step 1: proof that v∗ is a supersolution of (5.25)
Inequality (2.28) implies in particular (because ψ is continuous)

v∗(x, t)− v∗(−x, t)− ψ∗(x, t) ≥ 0

Therefore, in order to show that v∗ is a supersolution of (5.25), it remains
to show in the viscosity sense that (since Lv = vt +Mv)

vt +Mv ≥ 0 on R× (0,+∞) (2.29)

Let ϕ be a test function satisfying

h∗ ≥ ϕ with equality at P0 = (x0, t0) with t0 < T

Assume by contradiction that v∗ is not a supersolution at (x0, T − t0), i.e.
(taking into account the change of sign in the time derivative in (2.29),
because of the inversion of the time direction from h to v):

−ϕt +Mϕ < 0 at P0

As usual, for P = (x, t), replacing, if necessary, ϕ(P ) by ϕ(P ) − |P − P0|4,
we can assume that there exists δ, η > 0 small such that

−ϕt +Mϕ < 0 on Bδ(P0) ⊂ R× (−∞, T ),
h∗ ≥ ϕ+ η on ∂Bδ(P0),
h∗ = ϕ at P0

(2.30)

Let us consider a sequence of points Pn = (xn, tn) for n ≥ 1, such that

(Pn, h(Pn))→ (P0, h∗(P0))

Now we define for each n ≥ 1:

θn = inf
{
T ≥ t ≥ tn, (XPn

t , t) 6∈ Bδ(P0)
}
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which is a stopping time ≥ tn]. We then choose τ = θn in the dynamic
programming principle (5.24) which yields

h(xn, tn) ≥ E
{
e−r(θn−tn)h(XPn

θn
, θn)

}
≥ E

{
e−r(θn−tn)h∗(X

Pn
θn
, θn)

}
≥ E

{
e−r(θn−tn)

{
η + ϕ(XPn

θn
, θn)

}}
≥ e−2rδη + E

{
e−r(θn−tn)ϕ(XPn

θn
, θn)

}
where in the third line, we have used the second line of (2.30). We then use
Ito’s formula with stopping times to get for

Φ(y, s) = e−r(s−tn)ϕ(y, s) (2.31)

(up to redefining Φ outside the ball Bδ(P0) such that Φx is bounded):

E
{
e−r(θn−tn)ϕ(XPn

θn
, θn)

}
= E

{
Φ(XPn

θn
, θn)

}
= Φ(xn, tn) + E

{∫ θn
tn

{
Φt(X

Pn
s , s) + 1

2σ
2Φxx(XPn

s , s)− ρXPn
s Φx(XPn

s , s)
}
ds
}

= Φ(xn, tn) + E
{∫ θn

tn
e−r(s−tn)

{
(ϕt −Mϕ)(XPn

s , s)
}
ds
}

≥ Φ(xn, tn) = ϕ(xn, tn)

where in the last line, we have used the first line of (2.30).
Therefore

h(xn, tn) ≥ e−2rδη + ϕ(xn, tn)

Passing to the limit in n, we get

h∗(P0) ≥ e−2rδη + ϕ(P0)

Contradiction with the last line of (2.30).
This shows that v∗ is a supersolution of (5.25).
Step 2: proof that v∗ is a subsolution of (5.25)
Recall that (2.28) holds , which implies

v∗(x, t)− v∗(−x, t)− ψ(x, t) ≥ 0

Therefore v∗ is a subsolution if and only if we show that

vt+Mv ≤ 0 on {(x, t) ∈ R× (0,+∞), v∗(x, t)− v∗(−x, t)− ψ(x, t) > 0}
(2.32)
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Let ϕ be a test function satisfying

h∗ ≤ ϕ with equality at P0 = (x0, t0) with t0 < T

and
h∗(x0, t0) > h∗(−x0, t0) + ψ(x0, T − t0)

Assume by contradiction that v∗ is not a subsolution at (x0, T − t0), i.e.
(taking into account the change of sign in the time derivative in (2.29),
because of the inversion of the time direction from h to v):

−ϕt +Mϕ > 0 at P0

As usual, for P = (x, t), up to replacing ϕ(P ) by ϕ(P ) + |P − P0|4, we can
assume that there exists δ, η > 0 small such that
−ϕt +Mϕ > 0 on Bδ(P0) ⊂ R× (−∞, T ),
ϕ(x, t) ≥ η + h∗(−x, t) + 1{τ<T}ψ(x, T − t) on Bδ(P0) ⊂ R× (−∞, T ),

ϕ ≥ η + h∗ on ∂Bδ(P0),
ϕ = h∗ at P0

(2.33)
Consider a sequence of points Pn = (xn, tn) for n ≥ 1, such that

(Pn, h(Pn))→ (P0, h
∗(P0))

Now we define for each n ≥ 1:

θn = inf
{
t ≥ tn, (XPn

t , t) 6∈ Bδ(P0)
}

which is a stopping time ≥ tn. Given τ ≥ tn, let (using Φ defined in (2.31))

In(τ) = E {Φ(XPn(θn ∧ τ), θn ∧ τ)}

Applying Ito’s formula with stopping time θn ∧ τ we get

In(τ)

= Φ(xn, tn) + E
{∫ θn∧τ

tn

{
Φt(X

Pn
s , s) + 1

2σ
2Φxx(XPn

s , s)− ρXPn
s Φx(XPn

s , s)
}
ds
}

= Φ(xn, tn) + E
{∫ θn∧τ

tn
e−r(s−tn)

{
(ϕt −Mϕ)(XPn

s , s)
}
ds
}

≤ Φ(xn, tn) = ϕ(xn, tn)
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where in the last line, we have used the first line of (2.33). On the other
hand, we have

In(τ)

= E
{

1{τ<θn}Φ(XPn
τ , τ) + 1{τ≥θn}Φ(XPn

θn
, θn)

}
= E

{
1{τ<θn}e

−r(τ−tn)ϕ(XPn
τ , τ) + 1{τ≥θn}e

−r(θn−tn)ϕ(XPn
θn
, θn)

}
≥ E

{
e−r(τ−tn)

[
1{τ<θn}

{
η + h∗(−XPn

τ , τ) + 1{τ<T}ψ(XPn
τ , T − τ)

}
+ 1{τ≥θn}

{
η + h∗(XPn

θn
, θn)

}]}
≥ e−2rδη + E

{
1{τ<θn}e

−r(τ−tn)h(−XPn
τ , τ) + 1{τ<T}ψ(XPn

τ , T − τ) + 1{τ≥θn}e
−r(θn−tn)h(XPn

θn
, θn)

}
where in the fourth line, we have used the second and third lines of (2.33).
This implies that

ϕ(xn, tn) ≥ e−2rδη +

E
{

1{τ<θn}e
−r(τ−tn)h(−XPn

τ , τ) + 1{τ<T}ψ(XPn
τ , T − τ) + 1{τ≥θn}e

−r(θn−tn)h(XPn
θn
, θn)

}
Passing to the supremum on τ and using the dynamic programming principle
(Theorem 5.1) we get

ϕ(xn, tn) ≥ e−2rδη + h(xn, tn)

Passing to the limit in n, we get

ϕ(P0) ≥ e−2rδη + h∗(P0),

a contradiction to the last line of (2.33).
This shows that v∗ is a subsolution of (5.25) and ends the proof of the the-
orem.

Proof of Corollary 5.3
We set

ǔ(x, t) = q(x, T − t)

Since q is continuous and q(x, T ) = 0 q∗(x, T ) = 0. Thus Theorem 4.2 implies
that ǔ is a viscosity solution of the system of equations (4.19). In addition,
both ǔ and u satisfy the growth condition of the Comparison Principle of
Berestycki et al. (2014) (Theorem 4.1 above). Consequently we have ǔ ≤ u
and ǔ ≥ u.
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C Proof of Proposition 7.4

To make explicit the dependence of L on σ write

Lσu(x, t) := ut −
σ2

2
uxx + ρxux + ru

and
ψσ(y, t) := σyα(t)− c

Step 1: preliminaries: Berestycki et al. (2014) show that the antisym-
metric part of u

w(x, t) := u(x, t)− u(−x, t)

is the unique viscosity solution to a problem related to the obstacle problem
that u solves, namely:

min(Lσw,w − ψ) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w(0, t) = 0 for t ∈ (0,+∞),
w(x, 0) = 0 for x ∈ (0,+∞)

(3.34)

that satisfies for some C

|w(x, t)| ≤ C (1 + |x|) (3.35)

and that a comparison principle holds for sub/super solutions that satisfy
(3.35).

In addition, the function

w̃(x, t) := w(x, t)− ψ(x, t)

is the unique viscosity solution that satisfies for some C

|w̃(x, t)| ≤ C (1 + |x|) , (3.36)

of the problem:
min(Lσw̃ + f, w̃) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w̃(0, t) = c for t ∈ (0,+∞),
w̃(x, 0) = c for x ∈ (0,+∞)

(3.37)

Furthermore, a comparison principle holds for sub/super solutions of (3.37)
that satisfy (3.36).

The function a can be alternatively described as:

{x ≥ a(t)} = {x ≥ 0 : w(x, t) = ψ(x, t)} = {x ≥ 0 : w̃(x, t) = 0} .
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Step 2: the ūσ problem
Set

y =
x

σ
and ūσ(y, t) = u(σy, t).

Recall that u solves
min (Lσu, u(x, t)− u(−x, t)− ψ1(x, t)) = 0 for (x, t) ∈ R× (0,+∞),

u(x, 0) = 0 for x ∈ R

Thus ūσ solves problem P(σ)
min (L1ū, ūσ(y, t)− ūσ(−y, t)− ψσ(y, t)) = 0 for (y, t) ∈ R× (0,+∞),

u(y, 0) = 0 for y ∈ R

We also know that ūσ must solve the following problem

min (L1ūσ, ūσ(y, t)− ūσ(−y, t)− ψσ(y, t)) = 0 for (y, t) ∈ (0,+∞)× (0,+∞),

L1ūσ = 0 for (y, t) ∈
(
−∞, c

α(+∞)

)
× (0,+∞),

ūσ(y, 0) = 0 for y ∈ R

Since ∂ψσ
∂σ > 0 whenever y > 0, if σ′ ≥ σ then ūσ is a subsolution for the

problem P(σ). However P(σ) is very similar to problem (4.19) and the proof
of the comparison principle in Berestycki et al. (2014) can be easily adapted.
Thus ūσ is weakly increasing in σ.
Step 3: the ˜̄w problem
Defining

āσ(t) =
a(t)

σ
, w̄σ(y, t) = ūσ(y, t)− ūσ(−y, t)

we see that w̄σ solves
min (L1w̄σ, w̄σ − ψσ) = 0 for (y, t) ∈ Ω := (0,+∞)× (0,+∞),

w̄σ = 0 on ∂Ω

and thus
˜̄wσ = w̄σ − ψσ
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solves problem P̃σ
min (L1 ˜̄wσ + L1ψσ, ˜̄w) = 0 for (y, t) ∈ Ω := (0,+∞)× (0,+∞),

˜̄wσ = c on ∂Ω

with
{(y, t) ∈ Ω, ˜̄wσ(y, t) = 0} = {(y, t) ∈ Ω, y ≥ ā(t)}

A computation shows that

L1ψσ(y, t) = σyα′ + (ρ+ r)σyα− rc = σyα

{
α′

α
+ ρ+ r

}
− rc

Thus if σ′ ≥ σ then ˜̄wσ is a super solution for the problem P̃σ′ . Problem
P̃σ is very similar to (3.37) and the proof of the comparison principle in
Berestycki et al. (2014) for (3.37) applies. The comparison principle implies
that ˜̄wσ ≥ ˜̄wσ′ . Theorems 7.1 (ii) in Berestycki et al. (2014) guarantees that
∂wσ
∂y ≤ σα(t) (in the distribution or viscosity sense) and thus ˜̄wσ is non-

increasing in y. Hence āσ is (weakly) decreasing in σ. Since ū is increasing
in y,

b(t) = ū(−ā(T − t), T − t)

is weakly increasing in σ.

D Formal Asymptotics as c→ 0

We first establish that

qc = O

(
1

c
1
3

)
Recall that q(x, t) = u(x, T − t) so it suffices to prove that uc = O

(
1

c
1
3

)
As in Appendix C, we write

w̃(x, t) = w(x, t)− ψ(x, t), w(x, t) = u(x, t)− u(−x, t).

Proposition 9.5 of Berestycki et al. (2014) establishes that for c > 0 small
and x ≥ 0,

w̃(x, t) = cv0 (y, t) with y =
x

c
1
3

and v0(y, t) ' φ(ȳ) with ȳ =
y

ā(t)
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where

φ(ȳ) =


ȳ3

2
− 3

2
ȳ + 1 if 0 ≤ ȳ ≤ 1,

0 if ȳ > 1

and

ā(t) =

(
3σ2

2(1 + (ρ− λ)α(t))

) 1
3

Therefore formally:

w̃c(x, t) = φ (ȳ)− 1

3
ȳφ′(ȳ) =: φ̄(ȳ) = (1− ȳ)+

and
w̃c(x, t) = uc(x, t)− uc(−x, t) + 1

This implies that for x ≥ 0:

(∂xuc)(x, t) + (∂xuc)(−x, t) =
1

c
1
3 ā(t)

φ̄′(ȳ) = − 1

c
1
3 ā(t)

1[0,1](ȳ)

i.e.

2(∂xuc)(0, t) = − 1

c
1
3 ā(t)

Hence if we set
zc := c

1
3uc

Then zc solves:
Lzc = 0 in {x < a(t)} ,
∂xz

c = c
1
3 (∂xuc)(x, t) for x = a(t),

zc(x, 0) = 0 for x ∈ R

For c = 0, this gives formally:
Lz0 = 0 in {x < 0} ,
∂xz

0 = − 1

2ā(t)
for x = 0,

z0(x, 0) = 0 for x < 0

and then
z0 = O(1)

which implies the formal result.
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